ATTENTION
Please read this manual before using your PLUX product(s) and this software

The information contained in this manual has been carefully checked and were made every effort to ensure its quality. PLUX reserves the right to make changes and improvements to this manual and products referenced at any time without notice.

The word Bluetooth and its logo are trademarks of Bluetooth SIG Inc. and any use of such marks is under license. Other trademarks are the property of their respective owner.
PLUX Wireless Biosignals S.A.
email: plux@plux.info
web: http://www.plux.info

Headquarters
Zona Industrial das Corredouras, Lt. 14 – 1º
2630-369 Arruda dos Vinhos
Portugal
tel.: +351 263 978 572
fax: +351 263 978 902

Lisbon Office
Av. 5 de Outubro, n° 70 – 2º
1050-059 Lisboa
Portugal
tel.: +351 211 956 542
fax: +351 211 956 546
DISCLAIMER

OpenSignals (r)evolution, biosignalsplux & Bitalino products are intended for use in life science education and research applications only; they are not medical devices, nor medical software solutions, nor are they intended for medical diagnosis, cure, mitigation, treatment or prevention of disease and is provided to you “as is”.

We expressly disclaim any liability whatsoever for any direct, indirect, consequential, incidental or special damages, including, without limitation, lost revenues, lost profits, losses resulting from business interruption or loss of data, regardless of the form of action or legal theory under which the liability may be asserted, even if advised of the possibility of such damages.
TABLE OF CONTENTS

DISCLAIMER ... 4

Introduction ... 9

1 **Getting Started** .. 10
 1.1 Download & Install OpenSignals (r)evolution ... 10
 1.1.1 Download.. 10
 1.1.2 Windows Installation .. 10
 1.1.3 Mac OS X Installation .. 10
 1.1.4 Linux Installation ... 11
 1.2 OpenSignals (r)evolution Updates ... 12
 1.3 Add-ons Installation (Activation) ... 12
 1.4 Connecting Bluetooth Devices .. 15
 1.4.1 Windows 7 ... 19
 1.4.2 Windows 8 ... 22
 1.4.3 Windows 10 .. 24
 1.4.4 Linux ... 26
 1.4.5 Mac OS X ... 33
 1.5 OpenSignals Help .. 36
 1.5.1 User Manual .. 36
 1.5.2 Support .. 36
 1.5.3 Access License Information ... 36
 1.5.4 Activating & Deactivating Add-ons ... 36

2 **OpenSignals (r)evolution** ... 37
 2.1 OpenSignals Main Screen ... 37
 2.2 Device Manager .. 39
 2.2.1 Connecting Devices.. 40
 2.2.2 Connecting Devices Manually ... 40
 2.2.3 Device States .. 41
 2.2.4 Device Configuration ... 42
 2.3 General Acquisition Settings ... 51
 2.3.1 Continuous Mode .. 51
 2.3.2 File Prefix .. 52
 2.3.3 Devices .. 52
 2.3.4 File Formats & Specifications .. 53
 2.3.5 Converted Values ... 53
 2.3.6 Save Locations .. 54
 2.3.7 Auto-save Options .. 58
 2.3.8 Online Scheduling .. 59
 2.3.9 Replicate Device Configuration .. 60
 2.3.10 Integration & Data Streaming – TCP/IP & Lab Streaming Layer ... 61

3 **Recording & Visualizing Signals** ... 63
 3.1 Signal Acquisition Mode .. 63
 3.1.1 Signal Acquisition ... 65
 3.1.2 Information Bar ... 68
 3.1.3 Control Bar .. 71
3.2 Signal Visualization Mode .. 75
3.2.1 Open OpenSignals Files .. 76
3.2.2 Signal Visualization ... 79
3.2.3 Information Bar .. 80
3.2.4 Control Bar ... 80
3.2.5 Visualization of Digital Input and Output Signals 83
3.2.6 Changing the Sensor Type of a Channel in Post-Acquisition 83
3.3 Data Logging .. 86
3.3.1 Scheduling Offline Acquisitions .. 87
3.3.2 Downloading Offline Acquired Data .. 91
3.3.3 Deleting Offline Acquired Data .. 93
3.4 Synchronization ... 94
3.4.1 Connecting Devices ... 94
3.4.2 Device Configurations in OpenSignals (r)evolution 95
3.5 Accessories .. 97
3.5.1 Trigger ... 97
3.5.2 Light-Emitting Diode (LED) .. 100
3.5.3 Digital Synchronization Cable .. 102
3.5.4 Multi Sync Splitter .. 103
4 Add-Ons .. 104
4.1 Add-on Purchase & Activation ... 105
4.2 Listing & Using Add-ons ... 105
4.3 Add-on Reports ... 107
4.4 Add-On Processable Devices and Channels .. 109
4.5 Event Emulation .. 110
4.5.1 Hardware Configuration .. 110
4.5.2 Add-on Configuration .. 110
4.6 Event Annotation ... 114
4.6.1 Hardware Configuration .. 114
4.6.2 Add-on Configuration .. 114
4.7 Goniometer .. 118
4.7.1 Hardware Configuration .. 118
4.7.2 Add-on Configuration .. 119
4.8 Signal Statistics ... 121
4.8.1 Hardware Configuration .. 121
4.8.2 Add-on Configuration .. 121
4.9 Oximeter .. 123
4.9.1 Hardware Configuration .. 123
4.9.2 Add-on Configuration .. 125
4.10 Muscle Load .. 126
4.10.1 Hardware Configuration ... 126
4.10.2 Add-on Configuration ... 127
4.11 Electromyography (EMG) Analysis ... 130
4.11.1 Hardware Configuration ... 130
4.11.2 Add-on Configuration ... 131
4.12 Electrodermal Activity (EDA) Events ... 140
4.12.1 Hardware Configuration ... 140
4.12.2 Add-on Configuration ... 141
4.13 Heart Rate Variability (HRV) Analysis .. 143
4.13.1 Hardware Configuration ... 144
4.13.2 Add-on Configuration ... 144
Introduction

PLUX – Wireless Biosignals, S.A. creates innovative products for Physiotherapists and Researchers, by developing advanced biosignal monitoring platforms that integrate wearable body sensors, such as electromyography (EMG) and electrocardiography (ECG), combined with wireless connectivity and software applications to deliver real value recognized by its target markets.

OpenSignals (r)evolution is the software for data acquisition, visualization and processing while using PLUX’s biosignal hardware platforms. The purpose of this manual is to introduce the reader on how to fully work with OpenSignals (r)evolution, exploring all its features and options. This version of the manual covers the OpenSignals (r)evolution version release for all biosignalsplux products and BITalino (r)evolution.

OpenSignals (r)evolution allows the user to acquire data from one or multiple devices, setup the desired acquisition parameters (such as sampling frequency and resolution), save standard ASCII text format or in the more efficient Hierarchical Data Format (HDF) for post-processing in third-party tools such as Python or MatLab and visualize/zoom into the acquired data over a large number of channels.

It is extendable with add-ons that are either provided with the devices or can be purchased separately. It is even possible to create your own add-ons with specific functions and instruments (if you are interested, contact us and learn how to access the required tools) and share them and your projects with the BITalino and biosignalsplux communities.
1 Getting Started

OpenSignals (r)evolution is a Python-powered web-based application.

The OpenSignals (r)evolution software can be downloaded for free from the biosignalsplux and BITalino websites. New versions are released on a regular base, reason for which you are invited to check for updates at:

https://bitalino.com/en/software

After a successful download, follow the steps described in the next sections to install OpenSignals (r)evolution and to correctly set up the Bluetooth connection with your device.

1.1 Download & Install OpenSignals (r)evolution

1.1.1 Windows Installation

Double click the OpenSignals (r)evolution .EXE file that you’ve downloaded before and follow the steps of the installation wizard to install the software.

OpenSignals (r)evolution will appear on your desktop after a successful installation.

1.1.2 Mac OS X Installation

Double click the OpenSignals (r)evolution .PKG file that you’ve downloaded before and follow the steps of the installation program to install the software.

OpenSignals (r)evolution will appear in your applications folder after a successful installation.
1.1.3 Linux Installation

Open the Terminal and enter the directory of the downloaded .deb file using the cd command.

If you are not sure how to determine the correct path of the downloaded .deb file, enter the sudo apt install command into your terminal and drag’n’drop the downloaded OpenSignals .deb file into the terminal window. If done correctly, the current command, in your terminal, should be similar to this:

```
plux@ubuntu: ~$ sudo apt install ./OpenSignals_revolution_ubuntu_2019-07-08.deb
```

Press enter to continue.

Due to the sudo command you will be requested to enter your ubuntu account password. With this step it will be ensured that the OpenSignals (r)evolution installation is executed with administrator privileges.

You should now be able to find OpenSignals (r)evolution in the applications folder or run it through Terminal by simply typing OpenSignals.
1.2 OpenSignals (r)evolution Updates
Recent versions of the software will automatically notify you when newer versions are available for download. If you want to install the newest updates, click on INSTALL or click on NOT NOW to download the software at another time. Uncheck the Remind me later box if you do not wish to be notified anymore.

![Software update notification.](image)

Figure 1: Software update notification.

1.3 Add-ons Installation (Activation)
OpenSignals (r)evolution has a range of optional software add-ons for real time and post-processing, which can be used to expand the capabilities of your OpenSignals (r)evolution installation. These add-ons are either included in your biosignalsplux kit or can be purchased separately to work with any of your PLUX device(s).

In both cases these add-ons are activated by PLUX and linked to the MAC-address of your device. However, a verification within your OpenSignals (r)evolution software must be done in order to use the add-ons.

The most recommended approach requires an internet connection for the activation process, as it is done remotely during the start of OpenSignals (r)evolution. You can use the software add-ons without a stable Internet connection after the activation.

For more information about OpenSignals (r)evolution add-ons check also Section 4 Add-Ons.

Automatic Add-On Activation
For this, simply ensure that your computer has an activate internet connection and connect the device to your computer and in OpenSignals (r)evolution. OpenSignals (r)evolution will automatically connect with the PLUX servers and activate all the add-ons linked to your device’s MAC-address.
Manual Add-On Activation

In case the Automatic Add-On Activation process cannot be achieved for any reason, open the OpenSignals (r)evolution help interface (click the “?” icon) and refresh the add-ons list by clicking on one of the available refresh icons as highlighted in Figure 2.

![Figure 2: Manually refresh the add-ons list.](image)

Offline Add-On Activation

However, if the computer where OpenSignals (r)evolution is installed does not have access to the internet, an offline Add-On activation approach is also available.

In these special cases, you should request an offline activation code for the purchased Add-On to PLUX Support Team (support@plux.info), specifying on the e-mail the MAC-address of your device.

After receiving the offline activation code, it will be necessary to insert it on OpenSignals (r)evolution, which can be achieved through the previously mentioned help interface (Figure 3).

Once the help interface is opened, instead of clicking on the refresh icons you should click on one of the key icons (accordingly to the type of plugin you purchased | real-time or post-processing), as demonstrated on Figure 3.
A new window will be prompted and there you can **a)** paste the activation code and **b)** click on “ACTIVATE” button (Figure 4).

![Figure 3: Buttons for accessing the offline activation screen](image)

![Figure 4: Offline activation inputs](image)

The described steps should be enough to ensure an offline activation of the purchased Add-Ons. In order to finish the procedure, you only need to refresh the Add-Ons list, as described on the *Manual Add-On Activation* section available at Page 13.
1.4 Connecting Bluetooth Devices

NOTE

OpenSignals (r)evolution is able to establish a Bluetooth connection to your device whenever you add a PLUX device in the *OpenSignals (r)evolution* device manager. In this case, it is not needed to manually establish a Bluetooth connection with your device using your operating system’s tools.

However, if you are experiencing any kind of connection issues, we recommend connecting your device with your operating system first (before adding your device in *OpenSignals (r)evolution*’s device manager).

When connecting your device, you first need to enable Bluetooth on your computer or need to plug in the recommended Bluetooth dongle to an available USB port, if Bluetooth is not built in your computer or not reliable for high data rate transmissions.

biosignalsplux users may receive this dongle as part of their kits (not included in single purchases of single biosignalsplux hub).

BITalino users can purchase a trialled & tested Bluetooth dongle known to work with *BITalino*, at the *BITalino web store*.

The following links contain recommended options accordingly with the device and Bluetooth technology:

biosignalsplux Bluetooth Dongle

BITalino Bluetooth Dongle

BITalino Bluetooth Low Energy (BLE) Dongle (for BITalino BLE devices)

We recommend to follow the instructions presented on the following pages, accordingly to the operating system under use, ensuring a connection between PLUX’s devices and your computer.
Note about BLE Connection – BLD112 (Bluegiga)

In order to ensure an adequate data transmission between Windows computers and PLUX BLE based devices a high-performance Bluetooth Enumerator is necessary, taking into consideration the communication rates supported by PLUX devices (available sampling rates up to 4000 Hz).

The internal Bluetooth of some computers may not support these sampling rates, so, in these specific situations we recommend the usage of a properly tested dongle from Bluegiga\(^1\).

In normal circumstances the connection established between the computer and the dongle is enough to trigger the installation of the respective drivers, however, when this automatic procedure does not take place, the following steps should be followed:

2. Extract the files inside the .zip (extracted files and the parent .zip file can be deleted after the installation procedure);
3. Access to the Windows “Device Manager”. This tool can be reached by clicking on the “Start Menu” icon on the bottom-left corner of the screen, followed by typing “Device Manager” (or the respective translation accordingly to the native language);
4. After attaching the BLD112 dongle to an USB port, it should appear in the “Other Devices” section with a warning icon flagging a non-functional device;

 ![Figure 5: Unidentified BLD112 dongle.](https://store.plux.info/accessories/207-bitalino-proven-ble-dongle-810121502.html)

\(^1\) https://store.plux.info/accessories/207-bitalino-proven-ble-dongle-810121502.html
5. Right-mouse click on the “Low Energy Dongle” item. The “Update driver” option should be selected;

![Image of device options with updated driver selected](image)

Figure 6: Update driver option which gives access to the manual installation of Bluegiga drivers.

6. Click on “Browse my computer for driver software”;

![Image of search options](image)

Figure 7: Definition of the type of searching methodology.

7. Search for the folder extracted on step 2, select “windrv”, click “OK” and “Next”;
8. The previous action triggers the start of the installation. A confirmation dialog will appear, requesting the permission of the user to install the drivers. Click on “Install” button;

![Windows Security](image)

Figure 9: Confirm the installation intention.

9. After a few seconds the installation procedure should be completed with success and the BLD112 dongle is now recognized as a COM port.

![Update Drivers](image)

Figure 10: Check the state change of BLD112 dongle.
1.4.1 Windows 7

To connect a PLUX’s device to your computer via Bluetooth, click on the start button at the right lower part of the Windows taskbar and click on *Control Panel* to access the control panel of your computer.

![Access the Windows 7 control panel.](image)

In the control panel, select the *Add a device* option in the *Hardware and Sound* section.

![Select Add a device in the Hardware and Sound section.](image)

At this point, turn on your *biosignalsplux* or *BITalino* (if not done before) and wait until it appears in the list available devices. When your device has been found (here: *biosignalsplux*), click on the device and press *Next* at the lower right corner of the *Add a device* window.
Figure 13: Select your device to add it to your computer.

Click on Enter the device’s pairing code and click on Next at the lower right corner of the window to proceed.

Figure 14: Select Enter the device’s pairing code.

For biosignalsplux devices enter 123 and click on Next to connect to your device. For BITalino devices enter 1234 and click on Next to connect to your device.
If Windows confirms that your device has been successfully added to your computer, the connection has been successfully established.

Figure 15: Enter the pairing code to connect to your device.

Figure 16: Windows confirmation if the device has been successfully added.
1.4.2 Windows 8
To connect your biosignalsplux device to your computer via Bluetooth, **a)** press the triangle symbol at the right lower part of the Windows taskbar and **b)** click on the Bluetooth icon to open the Bluetooth settings panel.

![Figure 17: Access to the Bluetooth settings panel in Windows 8.](image)

At this point, turn on your biosignalsplux (if not done before) and wait until it appears in the list of Bluetooth devices. When your biosignalsplux device has been found, click on the device and click on **Pair** to connect to your device.

![Figure 18: Bluetooth settings panel.](image)

Windows will now try to connect to your device and pop up a window requesting you to enter the passcode (pin) of your device. Enter **123** (to connect to biosignalsplux) or **1234** (to connect to BITalino) and click on **Next**.
Figure 19: Requesting biosignalsplux' passcode (123).

If **Connected** is displayed under the name of your **biosignalsplux** device in the Bluetooth settings panel, the connection has been successfully established.
1.4.3 Windows 10
To connect a biosignalsplux or BITalino device to your computer via Bluetooth, click on the start button at the left lower corner in Windows 10 to open the start menu. Click on the gear symbol to open the settings panel of your operating system as can be seen below.

![Access to the settings panel in Windows 10.](image)

In the settings panel, click on the Devices Bluetooth, printers, mouse field to open the device configurations of your system.

![Windows 10 settings panel.](image)
Select Bluetooth from the list, which is displayed on the left side of your settings window. Note, that in some versions the Bluetooth option might not be available and that Bluetooth devices might be listed under Other devices as seen in Figure 22.

At this point, turn on your biosignalsplux or BITalino (if not done before) and wait until it appears in the list of Bluetooth devices. When your device has been found, click on the device and press Ready to pair in order to connect to your device.

![Figure 22: Bluetooth settings panel.](image)

Windows will now try to connect to your device and pop up a window requesting you to enter the passcode (pin) of your device. Enter 123 (biosignalsplux) or 1234 (BITalino) and click on next to connect to the device.

![Figure 23: Requesting passcode (123).](image)

If Pair is displayed under the name of your biosignalsplux device in the Bluetooth settings panel, the connection has been successfully established.
1.4.4 Linux

Ubuntu offers two options on how to connect PLUX’s devices via Bluetooth to your computer. The first option allows you to connect the device via Ubuntu’s system settings and the graphical interface. The second option allows you to connect the device via the terminal. However, the second option is recommended for advanced users only.

1.4.4.1 Connecting via System Settings

To connect your device to your computer via Bluetooth, click on the wheel in the top right corner of the display and click on System Settings... to access the settings panel of your computer.

![Screen shot of system settings in Ubuntu](image)

Figure 24: Access the system settings in Ubuntu.

In the settings panel, click on the Bluetooth logo to access the Bluetooth settings panel.
Click on the Bluetooth logo to access the Bluetooth settings.

At this point, turn on your biosignalsplux or BITalino (if not done before) and wait until it appears in the list of available devices. When your device has been found (here: biosignalsplux), it will be listed in the Device Search window: a) click on the device and b) select PIN options... to enter the device’s PIN to proceed.
In the new PIN Options window click on Custom PIN and enter the device’s PIN to connect to your device. For biosignalsplux devices enter 123 (while for BITalino the pin will be 1234) and click on Next to connect to your device.

NOTE
If the Custom PIN option is not available in this window, follow up with the instructions in 1.4.4.2 Connecting via Terminal to connect your device to your computer using the terminal instead of proceeding with the configuration via the system settings.

Figure 27: Enter the device’s pin to pair.

Click on Close to close this window and click on Next on the Device Search window to connect to your device.
Click on your device in the *Devices* list. If paired is confirmed (*Paired Yes*) your device has been successfully connected to your computer\(^2\).

\[\text{Figure 28: Successfully paired biosignalsplux.}\]

\(^2\) Do not worry if the connection is set off. It will automatically switch to on when connecting to your device using *OpenSignals (r)evolution* or other custom software for *biosignalsplux*.
1.4.4.2 Connecting via Terminal

NOTE
Using the terminal may harm your computer if it is not done correctly. Therefore, this method is recommended for advanced users only and following this method is done at your own risk.

To connect your device to your computer via Bluetooth, a) click on the Unity Dash logo in the toolbar on the left of your desktop to open the search function. In the search bar, b) enter terminal (or Terminal) and c) click on the terminal logo to open the Terminal.

![Figure 29: Access the terminal using the search function in Ubuntu.](image)

Enter `bluetoothctl` into the terminal window (without the $). Terminal should answer to this command with a line displaying the MAC-address of your internal Bluetooth adapter. The response should be similar to this (with AA:BB:CC:DD:EE:FF being replaced with your MAC-address):

```
$ bluetoothctl
[bluetooth]#
```
Next, turn on your internal Bluetooth module (if not done before) by entering `power on` into the Bluetooth prompt line. The response should be similar to this (again, with AA:BB:CC:DD:EE:FF being replaced with your MAC-address):

```
[bluetooth]
# power on
Changing power on succeeded
```

Next, it is needed to turn on a Bluetooth agent. The Bluetooth agents manages the transmission of pin codes (or pairing codes) between devices and is needed here to send the pairing code to the device you want to connect. To do this, enter `agent on`. The terminal response should be similar to this:

```
[bluetooth]
# agent on
Agent registered
```

Set up the `default-agent` to proceed with the pairing process.

```
[bluetooth]
# default-agent
Default agent request successful
```

At this point, turn on your device (if not done before) and enter `scan on` into the terminal to search for available Bluetooth devices and wait until your device's MAC-address appears in the list (here: biosignalsplux, 00:07:80:B3:84:01). Your device’s MAC-address can be found at the back of the device.

```
[bluetooth]
# scan on
Discovery started
[NEW] Device 00:07:80:B3:84:01 biosignalsplux
```

If your device is listed, enter `pair` followed by the MAC-address of your device to start the pairing process which will be respond with requesting the PIN code of your device.

For `biosignalsplux` devices enter 123 and for `BITalino devices` enter 1234 to connect to your device.
The result should be similar to this:

```
[bluetooth]# pair 00:07:80:B3:84:01
  Attempting to pair with 00:07:80:B3:84:01
Request PIN code
  [agent] Enter PIN code: 123
  [CHG] Device 00:07:80:B3:84:01 Connected: yes
  [CHG] Device 00:07:80:B3:84:01 Modalias: bluetooth
  [CHG] Device 00:07:80:B3:84:01 UUIDs: (device specific ID)
  [CHG] Device 00:07:80:B3:84:01 UUIDs: (device specific ID)
  [CHG] Device 00:07:80:B3:84:01 Paired: yes
  Pairing successful
[biosignalsplux]
```

If the terminal outputs *Pairing successful*, your device has been successfully paired to your computer.

The entire text of your terminal should now be similar to the following:

```
$ bluetoothctl
  [bluetooth]#
  [bluetooth]# power on
  Changing power on succeeded
  [bluetooth]# agent on
  Agent registered
  [bluetooth]# default-agent
  Default agent request successful
  [bluetooth]# default-agent
  Default agent request successful
  Discovery started
  [NEW] Device 00:07:80:B3:84:01 biosignalsplux
  [bluetooth]# pair 00:07:80:B3:84:01
  Attempting to pair with 00:07:80:B3:84:01
  Request PIN code
  [agent] Enter PIN code: 123
  [CHG] Device 00:07:80:B3:84:01 Connected: yes
  [CHG] Device 00:07:80:B3:84:01 Modalias: bluetooth
  [CHG] Device 00:07:80:B3:84:01 UUIDs: (device specific ID)
  [CHG] Device 00:07:80:B3:84:01 UUIDs: (device specific ID)
  [CHG] Device 00:07:80:B3:84:01 Paired: yes
  Pairing successful
[biosignalsplux]
```
1.4.5 Mac OS X

To connect your biosignalsplux device to your computer via Bluetooth, click on the Apple symbol at the top left corner of your display and select System Preferences...

In the system preferences window click on the Bluetooth symbol to open the Bluetooth settings.

![Figure 30: Mac OS X system preferences window.](image)

At this point, turn on your biosignalsplux (if not done before) and wait until it appears in the list of Bluetooth devices. When your biosignalsplux or BITalino device has been found, click on the device and click on Pair to connect to your device.
Figure 31: Click on Pair to connect to the biosignalsplux.

An error will occur indicating that the connection could not be established due to a mismatching passkey. Click on Options… to enter the passkey (pairing code).

Figure 32: Click on Options… to enter the passkey.
Mac OS X will now try to connect to your device and pop up a window requesting you to enter the passcode (pin) of your device. Enter 123 (biosignalsplux) or 1234 (BITalino) and click on Pair to connect to biosignalsplux.

![Enter the pairing code](image)

Figure 33: Enter the pairing code

If Connected is displayed under the name of your device in the Bluetooth settings panel, the connection has been successfully established.
1.5 OpenSignals Help

The help interface offers useful information and documents regarding OpenSignals (r)evolution. Here you can also check which plugins are activated for your device.

1.5.1 User Manual
The newest version of this manual can be accessed at any time by clicking on the OPENSIGNALS MANUAL button. We recommend accessing this manual via the OpenSignals (r)evolution help screen or by downloading it at:

1.5.2 Support
Don’t hesitate to contact us if you’re struggling with any kind of problems that cannot be solved with the information displayed in this manual. Send us an e-mail with a brief description of your problem to support@plux.info and we’ll get back to you as soon as possible. Please do not forget to mention which version of OpenSignals you’re using.

1.5.3 Access License Information
Access the Open Signals Terms of Use and license information and find out more about Python, the programming language behind OpenSignals (r)evolution, on the official Python homepage.

1.5.4 Activating & Deactivating Add-ons
Activate and deactivate add-ons that are available for your device (see section 4 Add-Ons for further information).
2 OpenSignals (r)evolution

After successfully connecting to a PLUX device on your computer, OpenSignals (r)evolution is ready to use.

We recommend to follow these steps in order to prepare and to start your acquisitions.

1. Turn on your device;
2. Start OpenSignals (r)evolution;
3. Open the device manager in OpenSignals (r)evolution;
4. Enable your device for acquisition and set up your preferred acquisitions settings (sampling rate, channels configuration, and sampling resolution);
5. Set up your general acquisition’s settings (file name, save location(s));
6. Start the acquisition.

These steps are listed in the following sections in further detail to guide you through all the steps.

2.1 OpenSignals Main Screen

![OpenSignals Main Screen](image)

Figure 35: OpenSignals (r)evolution main interface.

All OpenSignals (r)evolution windows, settings and signal related modes are accessible via the main Screen.
Live (or Real-Time Acquisition) Mode

Playback (or Visualization and Post-processing) Mode

Save Last Recording

Download Logged Data from Device

Device Manager – Find and configure your devices

Change OpenSignals (r)evolution settings

Check our online store

Help - Consult our manual, licensing, support, and add-ons

Active and inactive options are marked by blue and gray colors, respectively:

Activate

Your device should have the scheduling functionality active. Only the devices with internal memory are eligible for “downloading” data and schedule an acquisition.
2.2 Device Manager

select device(s), channels, channel labels, trigger, sample rate & resolution

The OpenSignals (r)evolution device manager lists and manages all known and available OpenSignals compatible PLUX devices and their acquisition configurations.

![Figure 36: The device manager displays all the available PLUX devices](image)

NOTE

OpenSignals (r)evolution is able to establish a Bluetooth connection to your device whenever you add a PLUX device in the OpenSignals (r)evolution device manager. In this case, it should be needed to manually establish a Bluetooth connection with your device using your operating system’s tools if you are using Windows OS.

Additionally, if you are experiencing any kind of connection issues, if your device cannot be found and listed in the device manager or if you are using macOS, we recommend to connect your device with your operating system first before adding your device in OpenSignals (r)evolution's device manager by following the instructions in 1.4 Connecting Bluetooth Devices.
Note, that the circle at the center of the icon provides additional information about whether there are known devices in the device manager or not.

- known devices available in the device manager
- no known devices available in the device manager

2.2.1 Connecting Devices
Click on the device manager to search for available devices. OpenSignals (r)evolution will automatically search for available devices and display them in the device manager. Newly found devices will be displayed in blue with a loading circle in the top right corner of the device panel, indicating that OpenSignals (r)evolution is building up a connection to this device.

![Figure 37: Building up connection with biosignalsplux.](image)

If you haven’t connected the device to your computer before, using your operating system’s device manager, a new window will pop up requesting the device’s pairing code or informing you about the need to execute this additional Bluetooth configuration. For biosignalsplux devices enter 123 and click on Next to connect to your device. For BITalino devices enter 1234 and click on Next to connect to your device.

2.2.2 Connecting Devices Manually
If your signal acquisition device is not listed as an available device to be used in OpenSignals (r)evolution you can manually add your device using its MAC-address. a) Enter the MAC-address of your device into the Add your device manually field and b) click on the magnifying glass to search for your device.

![Figure 38: Use the ‘Add your device manually’ field to search for PLUX’s devices using the MAC-address.](image)
NOTE
You can find the MAC-address of your device on the backside of the device.

Follow the instructions displayed on your screen and your device should now appear and be available in the device manager.

![Figure 39: Paired PLUX devices.](image)

2.2.3 Device States
Newly found devices are displayed entirely in blue in the device manager (here: biosignalsplux). Additionally, the number of all new and known devices are displayed in the center of the device manager (here: 1 new and 0 known).

![Figure 40: One newly found biosignalsplux device.](image)

PLUX devices can be displayed in the device manager without having any effect or being used in acquisitions. This happens when devices are turned on and available, but not activated nor configured for signal acquisitions. These devices are displayed with a gray ENABLE field in the device manager. OpenSignals (r)evolution will only acquire signals from active devices and ignore communication with deactivated devices.
Active devices will be used during the next acquisition with OpenSignals (r)evolution. To select and activate a device for signal acquisitions, click on the gray ENABLE field on the device. The ENABLE field will turn blue, indicating that the selected device is both available and configured for signal acquisition.

2.2.4 Device Configuration

Click on the device you would like to set up in the OpenSignals (r)evolution device manager to open the device’s configuration window.

NOTE

Please check section 5 Advanced Device Configuration for detailed information about the specific configuration options of your PLUX device.

2.2.4.1 Device Panel

The device panel displays the device’s logo, MAC-address and name (which can be user-defined; see Figure 43).

![Figure 43: Available device in the OpenSignals (r)evolution device manager.](image)
Click on the device panel of the device you would like to set up for signal acquisition. The device panel will expand and show all the available parameters that can be configured for acquisition.

![Extended device panel](image)

Figure 44: Extended device panel.

2.2.4.2 Device Name
To modify the device name, hover over the *NAME* field in the device panel and replace the MAC-address of the device which is displayed as the default name of your device. Note, that the new name will only take effect inside *OpenSignals (r)evolution* but will not change the device's Bluetooth name in your operating system.

![Changing device name](image)

Figure 45: Changing device name.

2.2.4.3 Enable
Click on *ENABLE* to activate or deactivate your device for your next signal acquisition. If the *ENABLE* field is displayed blue, the device is activated for acquisition. If the *ENABLE* field is displayed gray, the device is deactivated for acquisition (also see 2.2.3 Device States for more information).
2.2.4.4 Sampling Resolution

The sampling resolution sets the number of bits per sample for each channel. Click on the device panel to see all the available configuration options of your device (if not done before) and hover over the RESOLUTION field to see the available sampling resolutions for your device (see Figure 47; here: 8-bit and 16-bit).

For more detailed information about the available sampling resolution options of your device check the 5 Advanced Device Configuration section for the device under analysis.

2.2.4.5 Sampling Rate

The sampling rate sets the number of samples that are acquired per second per each channel, i.e. a sampling rate of 1000Hz will acquire 1000 samples per second per channel. Click on the device panel to see all the available configuration options of your device (if not done before) and hover over the SAMPLING RATE field so see the available sampling resolutions for your device (see Figure 48; here: 50, 100, 200, 300, ... 4000Hz).

If using OpenSignals (r)evolution versions from December 2017 (and newer) and biosignalsplux devices with firmware version 3.5, it is even possible to select higher sampling rates of up to 4000Hz. However, note that high sampling RATE for all channels are only supported for sampling rates of up to 3000Hz, while 4000Hz is limited to a maximum of 3 channels only. Sampling frequencies of 10Hz, 20Hz and 50Hz are supported with OpenSignals (r)evolution versions from June 2018 (and newer).
For more detailed information about the available sampling rate options of your device check the *Advanced Device Configuration* section of your device.

![Available sampling rates](image)

Figure 48: Available sampling rates.

NOTE

Higher resolutions & sampling rates lead to higher quality signal acquisitions but are linked to higher consumption of system resources & higher probability of Bluetooth transmissions issues which may lead to signal delays in the real-time acquisition mode.

We recommend the usage of a PLUX proven *Bluetooth dongle* to prevent Bluetooth connection related acquisition issues or to reduce the sampling resolution (or sampling rate) to prevent such issues whenever it is possible.
2.2.4.6 Channel Configuration

The channel configuration allows you to activate and deactivate channels for your signal acquisition session and to configure which sensors are connected to the single channels of your device.

a) Hover over the CHANNELS field to open the list of available channels, b) activate or deactivate channels by clicking on the circles which are placed on the CHANNELS field or next to each single channel. Active channels are marked with blue circles, while inactive channels are marked by empty circles (e.g. in Figure 49 channels 1-4 are active, while channels 5-8 are not). Note, that if you have no sensor specific type selected for an active channel, a warning sign will appear on the respective channel (seen in the image below).

Note, that if you have activated no sensor at all, a warning sign will appear next to CHANNELS as seen in the figure below.

Figure 49: Channel configuration.

Figure 50: Device panel with no active channel.
To select a pre-set sensor configuration for a channel, hover over the channel that you want to configure and click on the arrow next to the channel. Select the sensor type that fits to the sensor that is connected to your channel (see Figure 51).

![Figure 51: Channel type selection.](image)

A possible channel configuration can be similar to the configuration displayed in Figure 52 with an 8-channel biosignalsplux device.

![Figure 52: Possible channel configuration.](image)

This configuration will convert the digital data, which is received from the device into the signals’ original physical units. The action of choosing a sensor specific channel type ensures that the signal will be displayed in its physical units in the real-time acquisition mode and in the visualization mode, however, the files storing the acquisition signals will only store the digital values (raw data). The visualization in physical units will be restored when reloading OpenSignals (r)evolution files.

If a channel is activated, but no selection of sensor type has been made, the warning sign will be displayed on the selected channel as seen in Figure 49 (only in OpenSignals (r)evolution versions of June 2018 and newer).
NOTE
Some devices allow you to connect different sensor combinations and have to be configured according to your individual set up (e.g. biosignalsplux). Other devices have built-in sensors which are already pre-connected to the internal device channels. These devices have to be set up correctly according to the internal channel connections for the signals to be displayed correctly during acquisitions.

For more detailed information about the correct channel connections of your device and for a full list of all available and compatible sensor types please check the 5 Advanced Device Configuration section.

OpenSignals (r)evolution allows you to manually change the label of your channel, which can be useful when using multiple sensors of the same type, for example when using several EMG sensors applied on several muscles of the same muscle group. The channel label will be displayed during the real-time acquisition mode and can be helpful to distinguish the different channels.

Hover over the channel label that is located below the channel type field until a blue pen symbol appears. Click on it and enter the new channel label to change the channel label of the selected channel (see Figure 53).

Figure 53: Changing channel label.

2.2.4.7 Digital Output
Some accessories and components can be connected to the digital I/O port of the devices and controlled within the OpenSignals (r)evolution software. Such components are for example the biosignalsplux LED or the buzzer on the BITalino (r)evolution board.

Digital outputs are deactivated by default. Click on the circles on the DIGITAL field of the device panel to activate the digital output and to turn on components or accessories that are connected to the digital outputs at the start of the signal acquisition. Active digital outputs are marked by blue circles, while inactive outputs are marked by empty circles. The outputs can be turned off and on again as needed during the real-time acquisition mode.
Note, that biosignalsplux does only have a single digital output port to control any accessory that is connected to this port, while BITalino (r)evolution devices has two digital outputs pins with the first being connected to the on-board LED and the second being connected to the buzzer. However, additional digital ports can be available when using the multi-sync splitter for biosignalsplux devices.

Please check section 3.1.2.4 Digital Inputs & Outputs to learn how to control the digital outputs (and inputs) during the real-time acquisition mode.

2.2.4.8 Trigger Options
Trigger accessories allow you to manually start acquisitions using the biosignalsplux pushbutton, the footswitch or the BITalino (r)evolution pushbutton instead of automatically starting acquisitions when entering the real-time acquisition mode. OpenSignals (r)evolution’s trigger option is deactivated by default.

To use this feature, make sure your trigger accessory is connected to your device and activate the trigger option in the TRIGGER field of the device panel (see Figure 55).

4 biosignalsplux accessories have to be connected to the digital port of your device.
If the acquisition start is set to wait for a manual trigger, the circle will be marked blue. Otherwise, the circle will remain empty. Open the real-time acquisition mode and press your trigger whenever you are ready to start your acquisition.

2.2.4.9 Synchronizing Devices
8-Channel biosignalsplux devices offer the possibility of synchronized acquisitions by connecting up to 3 biosignalsplux hubs using the synchronization kit. Activating the SYNC function will synchronize the acquisition between all devices and prevent signal drifts within different devices.

Please check section 3.4 Synchronization for more information on how to use this feature.

2.2.4.10 Removing Devices
To remove devices from the OpenSignals (r)evolution device manager, click on the ‘x’ inside the orange circle (top right corner of the device panel) to remove the device from the device manager.

![Figure 56: Remove device by clicking on the ‘x’ in the orange circle.](image)
2.3 General Acquisition Settings

- save location, file prefix, file format and auto-save options

Figure 57: File options settings window.

2.3.1 Continuous Mode

The continuous mode will allow you a continuous acquisition until the acquisition is manually stopped. Activating this mode will continue your acquisition even if your device has lost connection to your computer and reconnect when the device is available and within a reachable distance. The Signal acquisition will then be restarted.

If this function is deactivated, the acquisition will be stopped after a communication break up.

Figure 58: Highlighting Continuous Mode option.
2.3.2 File Prefix

The file prefix is a user-defined text that will be added to the acquisition's file name. An additional timestamp is automatically set after this prefix (example here: opensignals_devicenames_YYYY-MM-DD_hh-mm-ss.format_extension).

2.3.3 Devices

When this option is selected, the name of the device being used will be automatically added to the acquisition’s file name. This is useful for example when recording data from multiple devices simultaneously, to easily distinguish the files generated by each device.

If you have not changed the name of your device (see 2.2.4.2 Device Name), the default device’s MAC-address will be used instead.
2.3.4 File Formats & Specifications

OpenSignals (r)evolution allows you to save the acquired sensor data into .TXT, .H5 or .EDF files. TXT files can be used to export signal data to 3rd party software. When opening TXT files, **OpenSignals (r)evolution** will convert your file into an H5 file as this file is more suitable to store additional metadata which is created when using **OpenSignals (r)evolution**.

The European Data Format (EDF) is a simple and flexible format for exchange and storage of multichannel biological and physical signals. Visit https://www.edfplus.info/ for more information.

NOTE
The TXT files do only contain the raw signal data from all sensors and digital I/O which were used during the acquisition. These files do not contain any processed data or results from **OpenSignals (r)evolution** add-ons (see section 4 Add-Ons). If you need to export the results of these add-ons, please follow the instructions in section 4.3 Add-on Reports.

2.3.5 Converted Values

OpenSignals (r)evolution stores, by default, only the raw digital sensor values in the acquisition files. Importing this acquired sensor data into 3rd party software usually requires a conversion of the raw digital sensor data into the original physical units, which can be done by using the sensor-specific transfer functions found in the sensor datasheets (see section 5.13.1 biosignalsplux and 5.13.2 BITalino for links to all sensor datasheets).
If the converted values option is activated, *OpenSignals (r)evolution* will store the converted values in additional acquisition files.

Note, that raw digital sensor data can be distinguished from converted data, as data provided in raw format ranges between 0 and \(2^n - 1\), with \(n\) being the configured resolution for the signal acquisition (e.g. between 0 and 65 535 (= \(2^{16} - 1\)) when using 16-bit resolution), while converted sensor values lie within much smaller ranges (e.g. between -1.5 and 1.5 for ECG or EMG sensor data).

2.3.6 Save Locations

Sets the path where the acquired data and files will be saved.
2.3.6.1 Local
To store files on your computer, click on the folder icon at SAVE LOCATION and select a path where you want to store your acquisition files. OpenSignals (r)evolution files will then be stored into the selected path.

![File options local Save Location button.](image)

Figure 64: File options local Save Location button.

2.3.6.2 RepoVizz
RepoVizz is an integrated online system capable of structural formatting and remote storage, browsing, exchange, annotation, and visualization of synchronous multi-modal, time-aligned data. This online platform allows you to store your OpenSignals (r)evolution files online and to easily share them if needed.

To use RepoVizz, activate RepoVizz in the SAVE LOCATIONS window (see Figure 63) and log in into your RepoVizz account using your username and the API key which has been generated for your account during the registration process (see Figure 65).

![RepoVizz login window.](image)

Figure 65: RepoVizz login window.

If you do not have a RepoVizz account yet, select Sign up here in the login window to access the RepoVizz homepage or follow this link:

https://repovizz.upf.edu/repo/Home

Note, that selecting RepoVizz as save location will not have any influence on other selected save locations (local, Dropbox or Google Drive).
2.3.6.3 Dropbox

To use Dropbox, activate Dropbox in the SAVE LOCATIONS window (see Figure 63). A new browser window will be opened in which you can log in into your Dropbox account (see Figure 66).

![Dropbox login window](https://www.dropbox.com)

Figure 66: Dropbox login window.

Enter your Dropbox account information into the required fields and click on Sign In to proceed. Dropbox will require your confirmation to allow OpenSignals (r)evolution to access your Dropbox. Click on Allow to proceed. Your files can now be stored into your Dropbox account.

If you do not have a Dropbox account yet, click on New to Dropbox? Create an account in the login window or access the Dropbox sign up page using the following link and follow the instructions on the Dropbox website: https://www.dropbox.com/

Note, that using Dropbox as save location will not have any influence on other selected save locations (local, RepoVizz or Google Drive).
2.3.6.4 Google Drive

To use Google Drive, activate Google Drive in the SAVE LOCATIONS window (see Figure 63). A new browser window will be opened in which you can log in into your Google Drive account (see Figure 67).

![Google Drive login window](https://openclipart.org/image/300px/svg_to_png/286495/Google-Drive-login-3.png)

Figure 67: Google Drive login window.

Enter your Google Drive account information into the required fields and click on Next to proceed, enter your account's password and click on Sign In. Your files can now be stored into your Google Drive account.

If you do not have a Google Drive account yet, sign up using the following link and follow the instructions on the Google Drive website:

https://accounts.google.com/SignUp

Note, that using Google Drive as save location will not have any influence on other selected save locations (local, RepoVizz or Dropbox).
2.3.7 Auto-save Options
When this option is enabled, *OpenSignals (r)evolution* will automatically save every acquisition session in a new file according to the configured file prefix, format, and other configurations mentioned in the last sections.

Auto-save is activated by default. Uncheck the box if you prefer to manually save your acquisitions after each recording session.

NOTE
After the previous configuration steps regarding the file “Save Locations” you will be able to load/save data from/to your repositories, through the *OpenSignals* file explorer:
2.3.8 Online Scheduling

![Online Scheduling](image)

Figure 70: Online scheduling.

This scheduling feature allows to schedule the start and end-time or duration of an acquisition. To configure, set up your device in the device manager as described in section 2.2 Device Manager, specify the start and stop times for the scheduled acquisition and then click on Enable button.

If no end-time or duration is set for a scheduled acquisition, the acquisition can be stopped manually.

For instructions on how to schedule offline acquisitions with biosignalsplux devices with internal memory, please check section 3.3 Data Logging.
2.3.9 Replicate Device Configuration

This feature allows to select a master device from which the configuration will be used as the new standard configuration of newly added devices.

To use this feature, set up your master device in the device manager as described in section 2.2 Device Manager. When done, return to the DEVICE CONFIGURATION seen in Figure 71 and define the master device by selecting its MAC-address in the dropdown menu (for the graphical example our master device is 00:07:80:4D:2E:AD) and check the checkbox next to REPLICATE DEVICE CONFIGURATION to set it as the master device. Every new device will then inherit the configuration of the selected master devices (channel configuration, sampling rate & resolution).
2.3.10 Integration & Data Streaming – TCP/IP & Lab Streaming Layer

OpenSignals (r)evolution comes with built-in streaming capabilities which allows you to stream all the acquired sensor data in real-time to third party software over your network. The following two streaming options are available:

TCP/IP
The TCP/IP (Transmission Control Protocol / Internet Protocol) module of the OpenSignals (r)evolution software is aimed to facilitate the support and data exchange between 3rd party and the OpenSignals (r)evolution software. It has been introduced with the release of October 2018.

You can find detailed information on how to use this streaming feature in the following document:

Lab Streaming Layer (LSL)
The Lab Streaming Layer (LSL) module of the OpenSignals (r)evolution software is, like the previous TCP/IP functionality, aimed to facilitate the support and data exchange between the 3rd party and the OpenSignals (r)evolution software. It has been introduced with the OpenSignals (r)evolution release of December 2018 and is based on the open-source LSL system which can be found on GitHub:

https://github.com/sccn/labstreaminglayer
As found in its official description, “LSL is a system for the unified collection of measurement time series in research experiments that handles both the networking, time-synchronization, (near) real-time access as well as optionally the centralized collection, viewing and disk recording of the data”.

This system enables OpenSignals (r)evolution to stream multi-channel sensor data acquired using biosignalsplux and BITalino kits to third 3rd party applications where only few lines of code are required to receive real-time sensor data.

You can download a detailed guide and example scripts demonstrating how to receive signals streamed via OpenSignals in Python at the following links:

https://downloads.plux.info/OpenSignals/opensignals_lsl_guide.zip

3 Recording & Visualizing Signals

OpenSignals (r)evolution has a live signal acquisition mode which enables real-time signal acquisition using PLUX devices and a signal visualization mode which allows you to visualize acquired signal acquisition sessions.

Both modes share common functions, which can be accessed via the symbols displayed on the following pages. We recommend going through these explanations to take advantage of all OpenSignals (r)evolution features.

3.1 Signal Acquisition Mode

NOTE
We recommend configuring your device before entering the signal acquisition mode by following the instructions described in 2.2.4 Device Configuration as modifications in device configurations cannot be done afterwards.

Recording signals with OpenSignals (r)evolution is made in signal acquisition mode (see Figure 73) which can be accessed in the main interface by clicking on the red button.

- Enter signal acquisition mode to record signals.

![Figure 73: Signal acquisition mode.](image)
When entered the signal acquisition mode, *OpenSignals (r)evolution* will automatically connect to your device to configure and start the signal acquisition. If your devices is configured to start by a manual trigger, for example using a trigger button or a foot switch, the recording will only start when the manual trigger has been set.

OpenSignals (r)evolution will automatically issue warning notifications if any error occurs during connection and/or configuration attempts with your device(s). If any of these errors occur, please check if your problem can be solved with the information given in 7 Troubleshooting or contact our support if the problems cannot be solved (see 9.3 Contact & Support).

The visualization mode consists on 3 different interface sections which allow you to control the visualization of the selected files and signals:

- Signal acquisition (1 in Figure 74; see 3.1.1 Signal Acquisition)
- Information bar (2 in Figure 74; see 3.1.2 Information Bar)
- Control bar (3 in Figure 74; see 0 Control Bar)

Please read the instructions on the following pages to take advantage of all the available feature of *OpenSignals (r)evolution*.

![Figure 74: Sections of the visualization mode.](image-url)
3.1.1 Signal Acquisition
The acquired signals are visualized in the signal acquisition window, which contains the signals of all acquiring channels (see Figure 75).

![Acquired Signal](image)

Figure 75: Visualization of the acquired signal(s).

In this window, there are several fields of information and configuration that lets you make some modifications on the displayed signals.

3.1.1.1 Channel info
The channel info provides information of the displayed channel (see Figure 75; here: channel 1 of a biosignalsplux device; A1), the type of channel which has been configured before the acquisition was made (here: ECG) and the label set for this channel and sensor during the acquisition (here: CH1).

Changes of these indications have to be made when configuring your device before starting an acquisition. Please review and follow the instruction in section 2.2.4.6 Channel Configuration for more information on channel types, number, and labelling.

3.1.1.2 Channel unit
The channel unit displays the original physical unit of the acquired signal, if a selection of channel type has been made during the configuration process of your device. The channel unit varies between types of sensor and selected sensor type (here: ECG signal displayed in mV). If no selection has been made, the default unit to be displayed is Volt (V).

Like referred on section 3.1.1.1, changes of these indications have to be made when configuring your device before starting an acquisition (section 2.2.4.6 Channel Configuration).
3.1.1.3 Visual Setup
The visual setup allows you to modify the visualization of your signal(s) (e.g. signal color) and to hide single channels, if their visualization is not required.

Additional functions to modify the visual setup of each channel can be accessed when hovering over each available channel (see Figure 76).

![Figure 76: Visual setup options (blue box).](image)

- **Display channel in the overview window**
 Hides or displays the selected channel in the overview window at the bottom of the visualization mode (see 3.2.4.5 Overview Window for more information).

- **Signal smoothing**
 This visualization option mode allows to change the plotting of the chart from the raw data to a sampling frequency weighted sub-sampled interpolation, which smooths the chart, showing only the general shape. This option is saved into the device configurations to a new property called `smoothChannels`, which defines, for each channel, whether to smooth or not the chart.

- **Signal color**
 Changes the color of the visualized signal. Click on this symbol to see all the available colors.

- **Hide channel**
 Click on this symbol to hide a single channel from the visualization mode. This feature is useful when the visualization of specific channels is not required at the moment. The hidden channel can be displayed again by selecting it in the information bar (see 3.1.2 Information Bar).
Move baseline up
Moves the baseline of the selected channel up (incl. signal).

Move baseline down
Moves the baseline of the selected channel down (incl. signal).

Zoom in
Zooms into the selected channel.

Zoom out
Zooms out of the selected channel.

Link channels
Links channels of the same type to each other and adjusts the same visual setup to all linked channels (e.g. scale, offset).
3.1.2 Information Bar

In the information bar, information about the acquiring device is displayed (device logo, name or MAC-address, sampling rate) as well as all the hidden channels (channels which contains acquiring signals but are not visualized during this acquisition). Additional information is given about the synchronization status (see 3.4 Synchronization) and the trigger status (see 2.2.4.8 Trigger Options).

The information bar does also provide options to control both digital input and outputs and, depending on the device being used, an adjustable output to control the analog output of a device (BITalino only).

When using biosignalsplux devices, the state of the digital inputs and outputs are displaced at the center of the information bar (see Figure 77).

![Figure 77: Information bar when using biosignalsplux devices.](image)

When using BITalino devices, additional control functions are displayed to control both digital outputs and digital inputs of the device as well as adjusting the analog output using pulse width modulation (see Figure 78).

![Figure 78: Information bar when using BITalino devices.](image)

For more information on digital input and output control see section 3.1.2.4 Digital Inputs & Outputs. For more information on analog output control see 3.1.2.5 Analog Output.

3.1.2.1 General Controls

When using multiple devices during an acquisition, the synchronization function should be activated to ensure that all devices are synchronized during the acquisition (see 3.4 Synchronization). In the information bar it can be seen if the synchronization function is active or not.

![SYNC](image)

Synchronization function

Indicates if OpenSignals is using the synchronization function to synchronize the acquisition of the multiple devices being used (function is active when symbol is blue; function is inactive when symbol is gray).
Hidden channels (see Figure 77; here: A2, channel 2) can be displayed in the acquisition window again by clicking on the arrow next to a hidden channel.

Show channel
Activates selected channel to be displayed in the visualization window.

3.1.2.2 Battery Indicator
Information about the biosignalsplux’s battery level is shown in the information bar and is visualized as follows:

- Battery level between 50% & 100%
- Battery level between 10% & 50%
- Battery level between 0% and 10%
- Battery discharged; please proceed with the charging process

3.1.2.3 Trigger
Accessories such as the pushbutton or the foot switch can be used to trigger the start of an acquisition. Triggered acquisitions have to be configured in the device manager before starting the acquisition. Make sure you have the trigger function activated during the configuration process of your device as described in 2.2.4.8 Trigger Options.

In the information bar it can be seen if the synchronization function is active or not.

![Figure 79: Trigger state.](image)

Triggered acquisition
Indicates if the current acquisition is configured to start by a trigger input (function is active when symbol is blue; function is inactive when symbol is gray).
3.1.2.4 Digital Inputs & Outputs

Accessories such as the pushbutton or the foot switch can be used as digital markers to mark special events during an acquisition.

In the information bar, it is possible to see the current input state of such devices. If the acquiring device is receiving a digital input (e.g. handheld switch is pressed), the circle next to INPUT DIGITAL turn blue. Otherwise, it will remain empty (see Figure 80).

![Figure 80: Digital input states (input device being used: handheld switch).](image)

Accessories such as LEDs can be used as visual markers, for example, to synchronize PLUX devices with 3rd party hardware if needed. To control the output state of the LED during the acquisition, click on the circle next to DIGITAL OUTPUT in the information bar.

![Figure 81: Digital output states for LED.](image)

NOTE

BITalino devices allows you to control two digital outputs and two digital inputs. On BITalino (r)evolution boards the input and output indications are the following (referring to the circles in the information bar):

- Left digital input: button state
- Right digital input: -
- Left digital output: LED
- Right digital output: buzzer

This configuration can vary when using BITalino Freestyle or BITalino Plugged devices, taking into consideration that the configuration of these devices may not be identical to the one available at BITalino Board.
3.1.2.5 Analog Output

BITalino devices allow you to control an analog output to control additional hardware or 3rd party hardware (e.g. custom sensors). To control the analog output, click and drag the blue button to the preferred analog output (see Figure 82).

![Figure 82: Adjusting analog output.](image)

3.1.3 Control Bar

The following features and options can be accessed in the control bar:

- Time axis (x-axis; 1 in Figure 83)
- Access OpenSignals (r)evolution add-ons (2 in Figure 83)
- Multi-channel visualization modes (3 in Figure 83)
- Hide/Unhide all channels (4 in Figure 83)
- Overview window (x-axis adjustments; 5 in Figure 83)
- Return to OpenSignals’ main interface (6 in Figure 83)

![Figure 83: Control bar.](image)

All features are explained on the following pages in more detail (except file information and access to open file dialog; see section 3.2.1 Open OpenSignals Files for more details).

3.1.3.1 Time Axis

The x-axis provides the time information and scaling for the acquired signals. These values are not changeable. However, the time span which is displayed can be adjusted by scaling the x-axis in the overview window.

3.1.3.2 Access OpenSignals Add-ons

OpenSignals (r)evolution can be extended by signal-processing add-ons to extract meaningful information from specific signal and sensor types. All available add-ons can be accessed by using the following symbol in the control bar to open the add-ons menu (see section 4 Add-Ons for more information).

Add-ons

Displays all available offline add-ons for post-processing purposes.
3.1.3.3 Multi-channel Visualization Modes

OpenSignals (r)evolution offers two different channel visualization modes (see Figure 85). The first (default) mode displays all the channels stacked vertically in order of the channel number (see Figure 85, left visualization mode). The second type splits the visualization mode vertically in half, displaying half of the channels on the left side of the visualization window and the other half on the right side (see Figure 85, right visualization mode). This mode can be useful when visualizing multiple channels at the same time (e.g. using an 8-channel biosignalsplux).

![Figure 84: Add-ons menu.](image)

![Figure 85: Channel visualization modes.](image)

Multi-channel visualization modes

Switch between available multi-channel visualization modes.
3.1.3.4 Hide and Unhide Hidden Channels
By default, OpenSignals (r)evolution will display all the available channels and signals that are stored in a loaded OpenSignals file. As a permanent visualization of all available channels is not always required, it is possible to hide the visualization of selected channels as described in section 3.1.1.3 Visual Setup.

All channels can be hidden or unhidden at once by clicking on the following symbols:

- **Unhide all channels**
 Unhides all hidden channels, resulting in a visualization of all available channels and signals.

- **Hide all channels**
 Hides all channels.

3.1.3.5 Overview Window
The overview window gathers and displays all available signals in the bottom frame of the signal visualization mode. This window serves to change the displayed time interval of the signals in the signal visualization window (adjustment of the x-axis).

To change the displayed time interval, click on the blue vertical bars in the overview window and move them to the start or ending point of your preferred time interval. Only the time interval which lies within the white frame in the overview window will be displayed in the visualization window (here: from 6 sec interval to 3 sec interval).

![Figure 86: Changing the visualized time interval in the overview window.](image-url)
Note, that the signals will be displayed in the overview window with the color that has been selected for the signals/channels in the visualization window.

If not needed, the overview window can be hidden by clicking on the following symbol placed to the top-left corner of the overview window. When hidden, the overview window can be displayed by clicking on this symbol again.

Hide/Show overview window

Hides the overview window when it is displayed and displays the overview window when it is hidden.

3.1.3.6 Return to the Main Interface

The signal acquisition mode can be stopped and exit at any time by clicking on the square symbol at the bottom right of the signal visualization mode. Exiting this mode will result in returning to the main screen.

Stop signal recording and exit signal acquisition mode

Stops signal recording and exits signal acquisition mode (returns to main screen).
3.2 Signal Visualization Mode

OpenSignals (r)evolution allows you to open files containing the previous signal acquisitions and/or to use OpenSignals add-ons to post-process your data (see 4 Add-Ons). To enter the signal visualization mode, click on the following symbol, which you can find in the main screen of OpenSignals (r)evolution (see Figure 35).

enter signal visualization mode to review and/or post-process your data

![Signal visualization mode](image)

Figure 87: Signal visualization mode.

The visualization mode consists of 3 different interface sections which allow you to control the visualization of the selected files and signals (identical to the ones presented on section 3.1):

- Signal visualization (1 in Figure 88; see section 3.2.2 Signal Visualization)
- Information bar (2 in Figure 88; see section 3.2.3)
- **Information Bar**
- **Control bar** (3 in Figure 88; see section 3.2.4 Control Bar)

Please read the instructions on the following pages to take advantage of all the available features, including the instructions on how to select and open *OpenSignals* compatible files.

Figure 88: Sections of the visualization mode.

3.2.1 Open OpenSignals Files
To visualize your previous acquisitions, it is needed to select and open the file which contains acquired signals. For this, click on the folder symbol inside the signal visualization mode, to open the open file dialog which allows you to navigate through the folders on your computer and to select and open your preferred *OpenSignals* files (see Figure 89).
At the top of the open file dialog, all the available save locations and platforms are displayed (Local, Repovizz, Google Drive…), which are connected to your OpenSignals (r)evolution (as described in 2.3.6 Save Locations). Click on the save location you have your files stored and wait for it to load the list of available files.

To navigate through the folder structures of your save location, click on a folder which is listed in the open file dialog to enter the folder or click on the first folder in the list (named “..”) to return to the previous folder. To select and open a file, click on your preferred file and confirm your selection by clicking on the OK button to open the selected file.
NOTE
Besides OpenSignals (r)evolution there are other 3rd party applications available which have been tested to work with PLUX devices and selected by our staff. OpenSignals (r)evolution can open, import, and visualize data acquired with these applications.

You can find all the available 3rd party applications on the following pages:

3.2.2 Signal Visualization

The Signal Visualization screen is similar to the one described at section 3.1.1 Signal Acquisition.

At the current section we will only highlight some additional features.

3.2.2.1 Channel info
On the Signal Visualization mode it is possible to edit the sensor label, which you can change directly on the signal visualization screen through the arrow located near the sensor label (Figure 91).

![Signal visualization window highlighting the Sensor Label edit arrow](image)

Figure 91: Signal visualization window highlighting the Sensor Label edit arrow

3.2.2.2 Channel unit
The channel unit displays the original physical unit of the acquired signal, if a selection of channel type has been made during the configuration process of your device (or during the signal visualization, as presented before on section 1.1.1.1.) The channel unit varies from the type of sensor and selected sensor type (here: ECG signal displayed in mV). If no selection has been made, the default unit to be displayed is Volt (V).
3.2.3 Information Bar
In the information bar, information about the device which has been used for the selected acquisition is displayed (e.g. device logo, name or mac-address, sampling rate) and all the hidden channels (signals which have been used during this acquisition but are not visualized at the moment).

![Information Bar](image)

Figure 92: Information bar.

Hidden channels (see Figure 92; here IO1 (digital input/output)) can be displayed in the visualization window again by clicking on the arrow next to a hidden channel.

Show channel
Activates selected channel to be displayed in the visualization window.

3.2.4 Control Bar
The following features and options can be accessed in the control bar:

- Time axis (x-axis; 1 in Figure 93)
- File information and access to open file dialog (2 in Figure 93)
- Access OpenSignals (r)evolution add-ons (3 in Figure 93)
- Multi-channel visualization modes (4 in Figure 93)
- Unhide hidden channels (5 in Figure 93)
- Overview window (x-axis adjustments; 6 in Figure 93)
- Return to OpenSignals’ main interface (7 in Figure 93)
- Switch Time-axis (new functionality; 8 in Figure 93)

![Control Bar](image)

Figure 93: Control bar.

All needed features are explained on the following pages in more detail (except file information and access to open file dialog; see section 3.2.1 Open OpenSignals Files).
3.2.4.1 Time Axis
The x-axis provides the time information for the acquired signals. These values are not changeable. However, the time span which is displayed can be adjusted by scaling the x-axis in the overview window.

3.2.4.2 Access OpenSignals Add-ons
OpenSignals (r)evolution can be extended by signal-processing add-ons to extract meaningful information from specific signal and sensor types. All available add-ons can be accessed by using the following symbol in the control bar to open up the add-ons menu (see section 4 Add-Ons for more information and).

Add-ons
Displays all available offline add-ons for post-processing purposes.

3.2.4.3 Multi-channel Visualization Modes & Unhide Hidden Channels
The current functionalities are also available on the signal acquisition mode, so, in order to get access to a more detailed description you can check the contents of sections 3.1.3.3. and 3.1.3.4.
3.2.4.4 Switch Time-Axis format

The current functionality was recently included on OpenSignals (r)evolution and ensures two paradigms of time-axis values.

The first option (predefined) for presenting the time-axis consists in relative values, i.e., the start of acquisition is always the reference value corresponding to 00:00.0.

So, in a 10m50s acquisition, it will be presented a time-axis within the range [00:00.0; 10:50.0].

The second available option corresponds to the presentation of absolute timestamps, i.e., each signal sample will have as x coordinate the exact daytime hour when it was acquired (from the device internal clock).

As an example, in a 10m50s acquisition started at 15h21m00s., the respective time-axis will be [15:21:00; 15:31:50].

Switch Time-Axis

Button responsible for interchanging between relative and absolute time formats.
3.2.4.5 Overview Window & Return to the Main Interface

As stated at the beginning of section 3.2 some screens/functionalities are shared between the Signal Acquisition and Signal Visualization modes, being these two elements common.

So, in order to get access to a detailed description about the Overview Window and Return to the Main Interface we recommend to check sections 3.1.3.5 and 3.1.3.6.

3.2.5 Visualization of Digital Input and Output Signals

Digital inputs and outputs from your devices can be controlled during signal acquisition by following the instructions in 3.1.2.4 Digital Inputs & Outputs. The digital input and output signals are visualized with all the other acquired signals in the signal visualization mode, with each digital input and output being displayed in an individual channel (see Figure 95).

![Figure 95: Visualization of digital input (I1) and output (O1) signals.](image)

3.2.6 Changing the Sensor Type of a Channel in Post-Acquisition

It is recommended to configure the sensor type of each acquisition before executing an acquisition, as described in the instructions in Section 2.2.4 Device Configuration.

However, in case this has not been done before (as shown in the screenshot below in highlight 1 and 2), it is possible to change the sensor type in the visualization mode for previous acquisition sessions.
The following instructions demonstrate how to change the sensor type in the visualization mode.

To change the sensor type in the visualization mode, click on the arrow next to "RAW" (3) to open the dropdown menu with all the available sensor types, and select the type that corresponds to your sensor (in this case ECG).

Afterwards, the raw digital sensor data will automatically be converted to the original physical unit of the sensor, as seen in the screenshot below where the sensor values now range between -1.5mV and 1.5mV (4) as the sensor type is now set to "ECG" (4).
The newly converted raw signal is stored in its original units in a new .H5 file with a "_converted" filename extension.

Example
- **Original acquisition filename:** SampleECG.txt
- **New converted signal's filename:** SampleECG_converted.h5
3.3 Data Logging

biosignalsplux devices with internal memory allow you to schedule and manage offline acquisitions which can be initialized and conducted without the requirement of a Bluetooth connection with your computer and OpenSignals (r)evolution.

The following devices are compatible with data logging features (scheduling, recording, and downloading recorded data):

- biosignalsplux Professional
- biosignalsplux Force
- MotionBAN
- RespiBAN Professional

Internal memory can also be added additionally for all biosignalsplux devices. Please contact our support via e-mail at support@plux.info if you’d like to add internal memory to your device to use all data logging features.

Devices with internal memory are displayed with an additional SCHEDULE button at the end of their device panels (see Figure 99). These devices are compatible with all data logging features.

![Scheduling Functionalities](image)

Figure 99: Data logging feature for devices with internal memory.
3.3.1 Scheduling Offline Acquisitions

NOTE
Before scheduling offline acquisitions, we recommend to set up the device and channels first. To do so, configure your device to fit your set up and channel configuration according to the instructions in section 2.2.4 Device Configuration before entering the schedule panel.

Click on the SCHEDULE button of your device with internal memory in the device panel to access the scheduling panel to schedule and configure your offline acquisition (see Figure 100).

![Figure 100: Scheduling panel.](image)

The scheduling panel allows to configure your offline acquisition by defining the type of initiator for the start of your acquisition (timed or triggered), to stop the acquisition when the limits of the internal memory are reached (STOP WHEN FULL), to time acquisition at a specific time or duration (STOP and ACQUISITION), and displays information about the available free memory and the estimated memory usage of your scheduled acquisition.

NOTE
The indications of the estimated end of the acquisitions are calculated estimations and might vary from real-life behavior.
NOTE
It is recommended to fully charge your device’s battery before using offline acquisitions as the acquisitions can be of longer period than the battery life-time of your device, for example when using the *STOP WHEN FULL* option. The estimated end will not be reached if the battery runs out before.

NOTE:
Your device does not have to be turned on before your scheduled acquisition starts, as it will automatically be turned on at the scheduled start-point.

To check if your device is acquiring data, check the LED information of your device as listed in chapter 5 *Advanced Device Configuration*.

3.3.1.1 Control by Trigger
This option allows you to manually start your acquisition using one of the available trigger accessories for *biosignalsplux* (footswitch or trigger button). To activate this feature, click on the circle next to *CONTROL BY TRIGGER* and make sure that your trigger accessory is correctly connected to the digital port of your *biosignalsplux* device.

This feature is activated if this circle is filled blue and inactive if the circle is empty. Activating this feature will also remove every time information in the *START* and *STOP* fields.

To set up a fixed duration of your offline acquisition, set up your preferred duration in the *ACQUISITION* field by using the ‘+’ and ‘-‘ buttons. The acquisition will then stop when the duration has been passed, with the duration starting at the point where the trigger signal has been given.

Click on the *STOP WHEN FULL* option to stop the acquisition only when there is no memory left on your device. Read the following section for more information about this option.

3.3.1.2 Stop When Full
The *STOP WHEN FULL* option will stop your offline acquisition when the internal memory of your device has run out of available memory. This function can both used with trigger-based or timer-based initiated offline acquisitions. If a fix time has been selected for the start of the acquisition, the estimated end of the acquisition will be calculated based on the available free memory and will be displayed in the *STOP* field of the scheduling panel (see Figure 101).
3.3.1.3 Scheduling Start & End Times

Click on the displayed time in the START or STOP fields to change the preferred start or end of your acquisition. In the new pop-up, select the date and time of the start or end of the acquisition. To select the date, click on the day of your choice in the calendar. To select the time, use the Hour and Minute sliders to configure your preferred time. By clicking the NOW button, the current date and time will be configured automatically.
Alternatively, you can also set up a fixed duration for your acquisition instead of configuring an end time. To do so, set up your preferred duration in the \textit{ACQUISITION} field by using the ‘+’ and ‘-’ buttons. The acquisition will then stop when the duration has been passed, with the duration starting at the scheduled time configured in the \textit{START} field.

![Figure 103: Configuring an acquisition with fixed duration.](image)

3.3.1.4 Setting & Clearing Acquisition Schedules

If you’ve finished configuring your device and your offline acquisition, click on the \textit{SET SCHEDULE} button at the bottom of the scheduling panel to transmit all the configurations to your device. The transmission and configuration has been successful if the button at the bottom of your device panel in \textit{OpenSignals (r)evolution} has changed from \textit{SCHEDULE} to \textit{SCHEDULED} followed by the day and time when the acquisition has been configured to start (non-triggered acquisitions only) (see Figure 104; here: Wednesday 22:51h).

![Figure 104: Completing the scheduling procedure.](image)

To clear a scheduled acquisition, click on the \textit{SCHEDULED} button and click on the \textit{CLEAR SCHEDULE} of the scheduling panel. The scheduled offline acquisition will be removed and your device can now be configured for a new offline acquisition.
3.3.2 Downloading Offline Acquired Data

After your offline acquisition have finished, you can download the recording by clicking on the download data button in the OpenSignals (r)evolution main screen:

Download an acquisition from the memory card

The offline data can be downloaded from your device's internal memory within OpenSignals (r)evolution via Bluetooth or via the fast USB data transfer cable (additional accessory). The following sections provide the instructions on how to download data using both methods.

3.3.2.1 Download via Bluetooth

Make sure your biosignalsplux is turned on and click on the download button in the OpenSignals (r)evolution main screen to access the download panel. In this panel, all the available offline acquisitions which are available for download from your device's internal memory are listed.

Each offline acquisition creates its own file where the acquired data is stored. In the download panel, the files are listed with their file name (FILE) their start time (START) and their entire duration (DURATION). Click on the indicated arrow in a file's row to download the selected file (see Figure 105) or click on the arrow in the top row of the downloading panel to download all available files. The downloaded files will be stored on your desktop.

![Download via Bluetooth connection](image)

Figure 105: Downloading offline acquired data via Bluetooth.

NOTE

The time needed to download an acquisition file depends on the size of the file and, therefore, on the duration of your scheduled acquisition. The download process might need several minutes to end. Do not use nor turn off your device when OpenSignals (r)evolution is downloading data, as doing so might make the downloaded file unreadable.
3.3.2.2 Download via Fast USB Data Transfer Cable

NOTE
This method requires accessories which have to be bought additionally. These accessories are available in our store.

We should refer that, currently, this accessory is only compatible with Microsoft Windows operating system.

Make sure your biosignalsplux is turned on and connected to your computer via USB with the biosignalsplux USB adapter. Click on the download button in the OpenSignals (r)evolution main screen to access the download panel. In this panel, all the available offline acquisitions which are ready for download from your device's internal memory are listed.

Click on the indicated USB symbol in a file's row to download the selected file (see Figure 106) or click on the USB symbol in the top row of the downloading panel to download all available files. The downloaded files will be stored on your desktop.

NOTE
The time needed to download an acquisition file depends on the size of the file and, therefore, on the duration of your scheduled acquisition. The download process might need several minutes to end.

Do not use nor turn off your device when OpenSignals (r)evolution is downloading data, as doing so might make the downloaded file unreadable.
3.3.3 Deleting Offline Acquired Data
To delete all files stored on the internal memory of your device, click on the *ERASE CARD* button at the bottom of the download panel.

![Data Erase Option (irreversible)](image)

Figure 107: Available option to erase all data inside the internal memory of the device.

NOTE
Deleted files *cannot be restored*. Make sure you have downloaded all the needed files *before* deleting or erasing the internal memory of your device to prevent accidental data loss.
3.4 Synchronization

One of OpenSignals (r)evolution’s features is the possibility of executing synchronized multi-device data acquisitions. This feature allows together up to three 8-channel biosignalsplux devices with each other using the biosignalsplux sync-cables and the multi-sync_splitter_cable to acquire signals from all devices simultaneously in a synchronized acquisition, preventing signal drifts between the single devices (time based differences) which could occur in non-synchronized long-time acquisitions.

NOTE
Signal drift may still occur when using accessories to synchronize PLUX devices with other devices (e.g. LED).

NOTE
The biosignalsplux synchronization cable/kit is needed for the use of this function. This additional accessory can be found here:

https://store.plux.info/sensors/322-synchronization-kit-820201211.html

3.4.1 Connecting Devices

NOTE
Components that are used for this feature require a digital port to synchronize the acquisition. By default, only the 8-channel biosignalsplux has a digital port that works with these accessories and this feature. A digital port can additionally be added to 4-channel biosignalsplux devices (contact our support for more information).

Connect the sync-cable to the digital ports of your devices. The digital port is the last input on the right side of the biosignalsplux device as marked in Figure 108. The devices should be connected as displayed in Figure 109.
When using 3 biosignalsplux devices, connect the single end of the multi-splitter to the digital port of one biosignalsplux device and connect two sync-cables to 2 of the available 3 inputs of the multi-sync splitter. Connect the other ends of the sync cables to the digital ports of the two biosignalsplux devices which are going to be used in the synchronized acquisition.

3.4.2 Device Configurations in OpenSignals (r)evolution

Configure all your devices as needed by following the instructions in 2.2.4 Device Configuration. When done, enable all devices which will be used during the acquisition by clicking on the ENABLE field of each device, click on their device panels and activate the sync-function (SYNC; circle must be blue) if it is not activated. When done, your device panel should look similar to the one seen in Figure 110.

NOTE

Variations in resolution, sampling rate, active channels, and/or trigger function of your configuration compared to the one displayed in Figure 110 will not influence your synchronized acquisition.
When acquiring from several devices with a correctly set up synchronized acquisition, the sync-function symbol should be displayed in blue in the signal acquisition mode (see Figure 111).

If the sync-function is not active (symbol is displayed in gray), restart the configuration of your devices by following the instructions above.
3.5 Accessories

OpenSignals (r)evolution is compatible with all PLUX devices and sensors, as well as the following accessories which are available for most devices.

NOTE
biosignalsplux Accessories need to be connected to the digital port of *biosignalsplux* devices. Please check if your device does have a digital port before considering using one of the following accessories (4-channel *biosignalsplux* devices do not have a digital port (can be added additionally); 8-channel *biosignalsplux* devices do have a digital port).

3.5.1 Trigger

NOTE
See also 2.2.4.8 Trigger Options and 3.1.2.3 Trigger. For data logging acquisition see also 3.3.1.1 Control by Trigger.

3.5.1.1 Handheld Switch

This trigger device is useful to begin acquisition via Bluetooth to *OpenSignals (r)evolution* (or any other custom software) or to manually start offline acquisitions stored in the hub’s internal memory when no Bluetooth connection is available.

How to connect your handheld switch to your biosignalsplux

The handheld switch needs to be connected to the digital port of your device.

How to configure your handheld switch in *OpenSignals (r)evolution* to mark events

Input devices, such as the handheld switch, do not require to be configured in *OpenSignals (r)evolution* if their intended use is to mark specific actions during an acquisition. In this case, their input state can be seen in *OpenSignals*’ signal acquisition mode in the information bar located right below the acquired signals (see Figure 113; circle to the left of *INPUT DIGITAL*). The digital input circle will turn blue if a digital input has been received (handheld switch pressed) or be kept empty if no digital input has been received (handheld switch not pressed; see Figure 113).
The received inputs will be visualized in an extra channel named \textit{IO1} in the visualization mode.

How to configure your handheld switch in OpenSignals \textit{(r)evolution} to trigger acquisitions

If the intended use of the handheld switch is supposed to trigger the start of an acquisition, it is needed to turn on this feature in the device manager. For this, open the **OpenSignals \textit{(r)evolution}** device manager and select the device you have your handheld switch connected to. In the device's panel, click on the circle next to TRIGGER to activate the trigger feature (circle must be blue; see Figure 114).

![Figure 114: Trigger configuration.](image)

In the information bar of **OpenSignals’** real-time acquisition mode (located right below the acquired signals), the state of the trigger feature is displayed (see Figure 115).

![Figure 115: Trigger state.](image)

Accessory specifications

Please read the datasheet of handheld switch carefully before using it the first time. The datasheet can be downloaded here:

3.5.1.2 Foot Switch
This trigger device is useful to begin acquisition via Bluetooth to *OpenSignals (r)evolution* (or any other custom software) or to manually start offline acquisitions stored in the hub’s internal memory when no Bluetooth connection is available.

![Foot switch](image)

Figure 116: Foot switch.

How to connect your foot switch to your biosignalsplux
The foot switch needs to be connected to the digital port of your device.

How to configure your foot switch in *OpenSignals (r)evolution* to mark events
Input devices, such as the foot switch, do not require to be configured in *OpenSignals (r)evolution* if their intended use is to mark specific actions during an acquisition. In this case, their input state can be seen in *OpenSignals*’ real-time acquisition mode in the information bar located right below the acquired signals (circle to the left of *INPUT DIGITAL*). The digital input circle will turn blue if a digital input has been received (foot switch pressed) or be kept empty if no digital input has been received (foot switch not pressed; see Figure 117).

![Digital input states](image)

Figure 117: Digital input states.

The received inputs will be visualized in an extra channel named *IO1* in the visualization mode.

How to configure your foot switch in *OpenSignals (r)evolution* to trigger acquisitions
If the intended use of the foot switch is supposed to trigger the start of an acquisition, it is needed to turn on this feature in the device manager. For this, open the *OpenSignals (r)evolution* device manager and select the device you have your foot switch connected to. In the device’s panel, click on the circle next to *TRIGGER* to activate the trigger feature (circle must be blue; see Figure 118).
In the information bar of OpenSignals’ real-time acquisition mode (located right below the acquired signals), the state of the trigger feature is displayed (see Figure 119).

3.5.2 Light-Emitting Diode (LED)

Note
See also 2.2.4.7 Digital Output and 3.1.2.4 Digital Inputs & Outputs.

The LED is typically used to provide visual feedback to the user. A common need when working with biosignals is the synchronization of the recorded data with external recording devices (e.g. a video camera). If applied to a camera lens, the LED sensor can be used to introduce common markers in the recording, hence providing a synchronization source. The LED sensor can also be useful for optical synchronization with third-party devices (provided that the third-party device has a photo detector), in applications where it is important to have electrical decoupling between devices.

How to connect your accessory to your biosignalsplux
The LED needs to be connected to the digital port of your device.
How to control your LED in OpenSignals (r)evolution

Output devices, such as the LED, do not require to be configured in OpenSignals (r)evolution. However, it is possible to select their initial state which can later be changed in the information bar of OpenSignals’ real-time acquisition mode which is located right below the acquired signals (see Figure 122; circle to the right of DIGITAL OUTPUT).

To select an initial state, open the OpenSignals (r)evolution device manager and select the device you have your LED connected to. In the device’s panel, click on the circle next to DIGITAL to turn on (blue circle) or off (empty circle) the LED for the start of your signal acquisition (see Figure 121).

![Figure 121: Initial state of the digital output (here: on).](image)

To change the output state of the LED during the acquisition, click on the circle next to DIGITAL OUTPUT in the information bar of the real-time acquisition mode. Here, again, the LED will be turned on if the circle is blue and off is the circle is empty (see Figure 122).

![Figure 122: Digital output states for LED.](image)

OpenSignals (r)evolution Add-On: Video Synchronization

The Video Synchronization add-on has been designed for research applications which involve recording data from sources other than the biosignal acquisition hardware devices (e.g. video camera). Given that the biosignal hardware and the camera are independent recording sources, a common problem when replaying the recording session is the synchronization of both. This plugin was created to provide an easy way to replay biosignal data synchronously with video using this LED.

For more information see section 4.17 Video Synchronization.
Accessory specifications
Please read the datasheet of LED carefully before using it the first time. The datasheet can be downloaded here:

3.5.3 Digital Synchronization Cable

Note
See also 3.4 Synchronization.

The multi sync splitter accessory meets your multi-device acquisition needs. By using digital synchronization cable(s), this accessory allows you to connect biosignalsplux devices with digital ports together to collect up to 24 channels at the same time (by connecting up to 3 HUBs together).

Figure 123: Sync cable & kit.

How to connect your accessory to your biosignalsplux
The digital synchronization cable needs to be connected to the digital ports of the devices that are being used for the multi-device acquisition (see 3.4 Synchronization).

How to configure synchronized acquisitions in OpenSignals (r)evolution
Open the OpenSignals (r)evolution device manager and select one of the devices you want to use for the multi-device acquisition. In the device’s panel, click on the circle next to SYNC to turn on (blue circle) or off (empty circle) the synchronization function to synchronize the acquisition of your devices (see Figure 124). This function must be active to ensure synchronized multi-device acquisitions without signal drifts. Repeat this step for the second device that is being used for the multi-device acquisition.

Figure 124: Activate synchronization feature.
3.5.4 Multi Sync Splitter

Note
See also 3.4 Synchronization.

The multi sync splitter accessory meets your multi-device acquisition needs. By using digital synchronization cable(s), this accessory allows you to connect biosignalsplux devices with digital ports together to collect up to 24 channels at the same time (by connecting up to 3 HUBs together).

![Figure 125: Multi sync splitter.](image)

How to connect your accessory to your biosignalsplux
The multi sync splitter needs to be connected to the digital port of one of the devices that are being used for the multi-device acquisition (see 3.4 Synchronization). When done, link the other device(s) with the multi sync splitter by connecting digital synchronization cable(s) (see "Digital Synchronization Cable") to the digital port(s) of the other biosignalsplux devices and to one of the three available inputs of the multi sync splitter.

How to configure synchronized acquisitions in OpenSignals (r)evolution
Open the OpenSignals (r)evolution device manager and select one of the devices you want to use for the multi-device acquisition. In the device’s panel, click on the circle next to SYNC to turn on (blue circle) or off (empty circle) the synchronization function to synchronize the acquisition of your devices (see Figure 126). This function must be active to ensure synchronized multi-device acquisitions without signal drifts. Repeat this step for all devices that are used for signal acquisition.

![Figure 126: Activate synchronization feature.](image)
4 Add-Ons

OpenSignals (r)evolution add-ons are signal processing software add-ons that extract meaningful information from your acquired signals. All the available add-ons are split into two types of add-ons which process data during signal acquisitions or after signal acquisitions.

Real-time Add-on:
Add-ons process signals during real-time signal acquisitions. These add-ons are available in the real-time acquisition mode. At the time being, the following add-ons of this type are available:

- Event Emulation
- Signal Statistics
- Oximetry
- Muscle Load
- Export analysis reports
- Event Annotation
- Goniometer
- Electromyography Analysis (EMG)
- Force Platform

Post-processing Add-on:
Add-ons process signals after a finalized acquisition session. These add-ons are available in the signal visualization mode. At the time being, the following add-ons of this type are available:

- Electrodermal Activity Events (EDA)
- Electromyography Analysis (EMG)
- Heart Rate Variability (HRV)
- Respiration Analysis (PZT & RIP)
- Video Synchronization
- Muscle Load
- Signal Statistics [New resource]
- Export analysis reports

Add-ons are not part of the free OpenSignals (r)evolution software and are either already included in some biosignalsplux kits and wearables or need to be purchased separately, with some exceptions such as the Event Emulation and the Signal Statistics add-ons, as they come free with OpenSignals (r)evolution. However, it is possible to test add-ons on time limited signals before purchasing them.
4.1 Add-on Purchase & Activation
Purchasable add-ons can be bought in the biosignalsplux and BITalino webstore which can be accessed via the following links:

biosignalsplux
https://store.plux.info/23-software-add-ons

BITalino:
https://store.plux.info/22-software-add-ons

After purchasing your add-ons and receiving the order confirmation, restart OpenSignals and you will now be able to use the add-on(s) in the live acquisition screen (real-time add-ons) and/or playback mode (post-processing add-ons).

NOTE
The add-on activation process requires a stable internet connection, as OpenSignals (r)evolution needs to communicate with the PLUX servers. Add-ons will work without an internet connection after a successful activation.

NOTE
Add-ons are linked to your PLUX device. Therefore, it is possible to use them on any computer your device is connected to. For this, connect your device to the computer you would like to use and configure it in OpenSignals (r)evolution accordingly to the instructions in section 2.2.4 Device Configuration.

Add-ons which are included in kits are already activated by default and ready-to-use when you receive them; if this is not the case please contact our team (see 9.3 Contact & Support).

4.2 Listing & Using Add-ons
Normally, all add-ons are activated and listed by default after a successful purchase. However, if your add-on is not listed in the signal visualization mode you have to activate the add-on the help interface (see Figure 127 and section 1.5.4 Activating & Deactivating Add-ons).

Enable add-ons in the help interface.

This allows you to access the available add-ons on the signal acquisition or visualization mode.
Activated add-ons can then be selected in the respective modes. Real-time add-ons can be used in the signal acquisition mode (see 3.1 Signal Acquisition Mode), while visualization add-ons can be used in the signal visualization mode (see 3.2 Signal Visualization Mode). Click on the add-on of your choice to start using it.
4.3 Add-on Reports

Export generated add-on results into PDF or CSV file.

The results generated by *OpenSignals (r)evolution* add-ons can be exported to a PDF or a CSV file containing all the generated data. While PDF files are useful to display all the acquired signal processing results including diagrams, CSV files allow you to export all your files into a readable format which can then be imported into 3rd party software.

![PDF report window](image)

Figure 129: PDF report window.

FILE PROPERTIES

Insert the title & author information of the current acquisition and processing session into the **TITLE** and **AUTHOR** fields. This information will be displayed on the first page of the PDF file.

The first page will also contain general information about the selected *OpenSignals* file, information about the devices used during the acquisition and information about the acquisition configuration containing the sampling rate, sampling resolution and active channels.

ADD-ONS

Select the add-ons for which the generated results should be exported into the PDF/CSV file. Make sure you have used the selected add-ons before processing your signals, otherwise the generated PDF/CSV files will list no information about the selected and non-used plugins.
FORMAT
The export function offers the export of files into PDF or CSV file. The PDF file will contain all the add-on generated results and diagrams as well as general information about the acquisition settings (e.g., OpenSignals (r)evolution version, date time, duration, used devices, etc.). The CSV file will only contain the generated data without the diagrams and all the general information. In this case, the CSV contains headers which are placed within curved parenthesis ({{...}}) providing general information about processed file/signal and about the extracted values. These values are always listed right below a given header ({{...}}).

FILENAME & PATH
Select the preferred filename of the new file and navigate until the destination directory.
4.4 Add-On Processable Devices and Channels

All OpenSignals (r)evolution add-ons provide a way to specify the device and channels to be processed, as demonstrated on the following topics.

Additionally, the researcher can limit the processing stage to the desired time-window.

DEVICE & CHANNEL

Select the MAC-address of the device that was used for the signal acquisition. If only one device has been used for signal acquisition, the MAC-address of the used device will automatically be selected (several MAC-addresses will be displayed if multiple devices were used during the acquisition session). When done, select one of the available channel options (“PROCESS APPLICABLE CHANNELS” or “PROCESS ALL VISIBLE CHANNELS”) in order to start the processing stage on the pretended channels.

Active channels are all channels which have not been hidden and are therefore visualized in the signal visualization mode (see sections 3.2 Signal Visualization Mode).

PROCESSING INTERVAL

The processing interval selects the time interval that is to be processed. It can be changed by manually writing the start and end of the acquisition session using the time fields in the configuration window or by changing the size of the visualization interval in the overview window.

Figure 130: Configurable options regarding the device and channels to process on HRV analysis add-on.
4.5 Event Emulation

Event emulation

DESCRIPTION
The event emulation add-on allows you to train and test a classifier. During the testing phase, the classification model returns, in real-time, the class to each the current acquired data should belong (prediction). Each class can also trigger a previously configured keyboard/mouse event.

This add-on is an online add-on. It is available in the signal acquisition mode (see 3.1 Signal Acquisition Mode).

This add-on is included in OpenSignals (r)evolution and does not have to be purchased additionally.

4.5.1 Hardware Configuration
This add-on works with every kind of signal being acquired with PLUX devices. It is not restricted to any specific sensor.

4.5.2 Add-on Configuration

![Event Emulation Add-on](image)

Figure 131: Event emulation add-on.
DEVICES & CHANNELS
The classification methodology will be applied to all active channels.

COLLECTING DATA FROM EACH CLASS
Accordingly to the user application, multiple classes can be defined, in our practical example a binary classifier will be trained, using data from a triaxial accelerometer.

The classifier should be able to separate two classes: a) up and down movements and b) lateral movements.

Transmitting knowledge to this system is an essential stage. To achieve this purpose, training data of each class should be provided to the machine-learning algorithm, which can easily be done by clicking on the respective “Record dataset Class<x>” button.

![Figure 132: Event emulation add-on | button that triggers the training stage.](image)

After pressing the button, during a few seconds the algorithm is collecting training data from the active channels, in our specific case, during these seconds we should execute “up and down” movements for class 1 and “lateral movements” for class 2.
EMULATING EVENTS
When the training stage is completed the event emulation can be configured, linking a keyboard/mouse event to each class.

![Image of event emulation](image1.png)

Figure 133: Event emulation add-on | definition of keyboard/mouse events.

ADD NEW TRAINING CLASSES
New classes can be added to the classification system, operation that is achievable through the “Add new class” button.

CLASSIFIER TRAINING STAGE
After collecting training data, the classification model needs to fit to these data.

In order to officially start the fitting procedure, the user should click on “Train Classifier” button at the bottom zone of the add-on graphical interface.

![Image of classifier training](image2.png)

Figure 134: Event emulation add-on | highlighting Add new class and Train Classifier buttons.
CLASSIFICATION OUTPUTS
With the entire configuration concluded the testing phase can begin through a clink on “Check State” button, action that will trigger the generation of classification results (predictions).

Figure 135: Event emulation add-on | classification results/predictions.
4.6 Event Annotation

Event Annotation

DESCRIPTION
While acquiring/collecting physiological data it becomes extremely relevant to annotate specific events that occur during signal acquisition.

As a practical example, researches where EDA data is collected require a precise annotation of the stimulus time instant, i.e., the event responsible for the electrodermal response.

Using the Event Annotation add-on, the researcher can annotate this type of events with a simple button click, through the computer keyboard, something essential during the post-acquisition analysis stage.

This add-on is both an online and a post-acquisition add-on. It is available in the signal visualization mode (see 3.2 Signal Visualization Mode) and in the signal acquisition mode (see 3.1 Signal Acquisition Mode).

4.6.1 Hardware Configuration
This add-on works with every kind of signal being acquired with PLUX devices. It is not restricted to any specific sensor.

4.6.2 Add-on Configuration

![Figure 136: Event Annotation add-on (acquisition mode @left and visualization mode @right).]
ACQUISITION MODE

DEVICES & CHANNELS
The selection of the devices and channels where the processing algorithms will be executed, is made on the add-on interface (Figure 137).

It is possible to apply signal annotation events to **all devices + all channels** or only in a single channel.

EVENT COLOR AND LABEL
After defining the device and channels to which the current event will be applied a **color** and **label/keyboard key** can be specified.

Regarding the **label/keyboard key**, this will be keyboard key that when pressed it triggers the event annotation, while the color defines the graphical appearance of the event bar, drawn at the signal acquisition screen when the event is triggered (keyboard button click).

To apply the previous "annotation" the configuration button **ADD** should be clicked.
With the last configuration (Figure 138) every time the keyboard “a” button is clicked a blue marker will be drawn in “All” devices and “All” channels (Figure 139).

Additional events can be programmed. In order to achieve this multiplicity, the enumerated steps should be repeated, choosing a different keyboard trigger.

![Event Annotation add-on](graphical representation of the annotated event)

Stopping the real-time acquisition will cause the generation of an additional .txt file where the registered events are stored (this file is in the same location where the acquired file is stored or in the predefined OpenSignals (r)evolution folder of the user computer).
VISUALISATION MODE

The real-time annotated events can be observed inside the Visualisation Mode of OpenSignals (r)evolution.

The user only needs to open the annotation file, as an example, on Windows systems it should be available at:

```
"C:\Users\<username>\Documents\OpenSignals(r)evolution\temp\<filename>_EventsAnnotation.txt"
```

After this loading stage the annotation data can be visualised by simply clicking on “DRAWANNOTATIONS”.

Figure 140: Event Annotation add-on | graphical representation of the annotated event [visualisation mode]
4.7 Goniometer

DESCRIPTION
PLUX’s Goniometer (https://www.biosignalsplux.com/en/ang-goniometer/) requires a proper calibration procedure in order to produce precise results adapted to the experimental methodology of the user research.

To facilitate this procedure, an auxiliary add-on is available to the users, providing an easy way to calibrate the Goniometer.

This add-on is both an online and a post-acquisition add-on. It is available in the signal visualization mode (see 3.2 Signal Visualization Mode) and in the signal acquisition mode (see 3.1 Signal Acquisition Mode).

4.7.1 Hardware Configuration
The goniometer add-on only processes sensor data acquired with Goniometer sensor:

biosignalsplux Goniometer sensor:
https://plux.info/sensors/290-goniometer-gon-820202502.html

How to configure your sensor in OpenSignals (r)evolution
Open the OpenSignals (r)evolution device manager and select the device to which you have your Goniometer sensor connected to.

In the device’s panel, activate the two channels where the Goniometer cables are attached (in our case we choose channels 1 and 2).

After the activation procedure (ensured with a click on the “channel activation” button which should become blue) it is necessary to define the type of sensor as “GONIO”, accordingly with the illustration of Figure 141.

Figure 141: Channel activation and sensor type selection.
4.7.2 Add-on Configuration

Acquisition Mode

![Goniometer Calibration](image)

Visualisation Mode

![Goniometer Calibration](image)

Figure 142: Goniometer Add-on (acquisition mode @left and visualization mode @right).

ACQUISITION MODE

DEVICES & CHANNELS

The selection of the devices and channels is automatically executed by the add-on, accordingly to the sensor label, configured prior to the acquisition, as demonstrated on Figure 141.

CALIBRATION PROCEDURE

In order to ensure an effective calibration procedure, the goniometer cells should be oriented in the **0 degrees configuration** (generally the 0 degrees configuration will be similar to the one presented at Figure 143, but the researcher can customize it accordingly to the desired application).

![Goniometer common 0 degrees orientation](image)

Figure 143: Goniometer | common 0 degrees orientation
After the previous experimental setup, it will only be necessary to click on “Calibrate Now” and the offset values will automatically appear at the add-on interface and they will also be stored inside the metadata of .h5 file.

With these steps the Goniometer is calibrated and ready to use.

VISUALISATION MODE

The extracted calibration offsets, during the real-time acquisition stage, are automatically stored inside the .h5 file metadata.

So, when a .h5 file containing previously calibrated goniometer data is loaded in the visualisation mode of *OpenSignals (r)evolution* the offsets can easily be applied to the signals pressing the “REMOVE OFFSETS” button in the add-on interface.

With this procedure the researcher can visualise the acquired data in a calibrated format and start the execution of offline processing algorithms.
4.8 Signal Statistics

Signal statistics extracts statistical time-based information from all active channels.

DESCRIPTION
This add-on extracts time-based features from all active acquiring channels in real-time. It provides useful information such as the minimum and maximum values of each channel as also the mean, median, root mean square values and the residual sum of squares.

This add-on was originally a real-time add-on, available in the signal acquisition mode (see 3.1 Signal Acquisition Mode).

However, with the recent OpenSignals (r)evolution update, the Signal Statistics add-on functionalities are also available on the signal visualization mode (3.2 Signal Visualization Mode).

4.8.1 Hardware Configuration
This add-on works with every kind of signal being acquired with PLUX devices. It is not restricted to specific sensors.

4.8.2 Add-on Configuration

![Figure 146: Signal statistics add-on.](image)
This add-on does not require any configuration for the signal acquisition mode version. It will automatically provide statistical information in a table, as soon as it has been selected in the signal acquisition mode for all actively acquiring channels/devices. The respective channel number is displayed in the first column of the table (here: 1,2,3).

![Signal Statistics](image)

Figure 147: Signal statistics add-on | devices and channels under analysis.

This add-on provides the minimum and maximum values of each channel as also the mean, median, root mean square values and the residual sum of squares.

Additionally, a histogram with the distribution of sample values can be visualized for a device/channel configuration at once.

Regarding the signal visualization version, in order to get results from the **Signal Statistics** plugin, it should be selected the desired time segment to be processed and the user should trigger the statistical algorithm by clicking on "PROCESS" button.

![Signal Statistics Plugin](image)

Figure 148: Signal statistics add-on | triggering signal processing through the interface clickable button.
4.9 Oximeter

O₂ Computes and displays the oxygen saturation and beats per minutes.

DESCRIPTION
This add-on uses SpO2 sensor data form the biosignalsplux SpO2 sensor to estimate the saturation level in the blood with +/- 2% accuracy compared to a medical sensor. Additionally, this add-on analyses all the acquired sensor data and provides BPM values in real-time.

This add-on is a real-time add-on. It is only available in the signal acquisition mode (see 3.1 Signal Acquisition Mode).

This add-on is not included in OpenSignals (r)evolution and must be purchased additionally.

4.9.1 Hardware Configuration
The oximeter add-on processes sensor data acquired with one of the following sensors:

biosignalsplux SpO2 sensor:

https://store.plux.info/professional-sensors/391-spo2.html

biosignalsplux SpO2 sensor with finger clip:

https://store.plux.info/professional-sensors/382-spo2.html

Firmware requirements
The SpO2 sensor requires a specific biosignalsplux firmware version (v.3.4) to work. Please follow the instructions in chapter 7.2 to learn how to check the current firmware version of your device and to upgrade or downgrade the firmware to version 3.4. if another version is currently being used on your device.

You can download the correct firmware here (v.3.4 for SpO2 & fNIRS):

https://www.biosignalsplux.com/en/software/utilities

After checking and, if required, downgrading or upgrading your device’s firmware, remove your device from the OpenSignals (r)evolution device manager and from your computer’s Bluetooth list and reconnect your device inside OpenSignals (r)evolution. If the firmware change has been successfully, your device should now be displayed with an orange biosignalsplux in your device manager (see Figure 149).
How to connect your sensor to your biosignalsplux

The SpO2 sensor has to be connected to the ground port of your device. Connecting this sensor to an analog input of your device will not work.

How to configure your sensor in OpenSignals (r)evolution

Open the OpenSignals (r)evolution device manager and select the device to which you have your SpO2 sensor connected to.

In the device’s panel, set up channel 9 for signal acquisition, set the port (P) to 9 and the channel (C) to 1 (Figure 150) and select one of the available SpO2 options in the channel’s dropdown menu. The different options are designed for different placement areas of the SpO2 sensor. We recommend selecting the available configuration that fits best your needs. The following configurations are available:

- **SPO2.ARM** for applications where the sensor is placed on the subject’s arm
- **SPO2.FING** for applications where the sensor is placed on the subject’s finger
- **SPO2.HEAD** for applications where the sensor is placed on the subject’s head
4.9.2 Add-on Configuration

![Oximeter](image)

Figure 151: Oximeter add-on.

This add-on does not require any configuration. It will automatically provide the estimated oxygen saturation level in the $SpO2$ field and the calculated BPM in the BPM field in real-time based on sensor data of the SpO2 sensor.
4.10 Muscle Load

Online and offline muscular load analysis add-on for ergonomic applications

DESCRIPTION
This add-on evaluates the muscular load that the muscles are subjected during a normal work day in real-time and after signal acquisition sessions. It measures the static, median and high intensity levels and displays the amplitude probability density function which helps detecting weather the worker is working within ranges that are safe or risky.

This add-on works both offline and online. It is available in the signal visualization mode (see 3.2 Signal Visualization Mode) and in the signal acquisition mode (see 3.1 Signal Acquisition Mode).

This add-on is included in the biosignalsplux Professional, ergoplux Explorer and ergoplux Researcher kits. It can also be bought in addition to all biosignalsplux and BITalino devices.

4.10.1 Hardware Configuration
The Muscle Load add-on processes EMG sensor data acquired with one of the following sensors:

biosignalsplux EMG Sensor:
https://store.plux.info/sensors/283-electromyography-emg-820201201.html

biosignalsplux MuscleBAN:
https://store.plux.info/biosignalsplux-wearables/372-muscleban.html

BITalino EMG Sensor:
https://store.plux.info/bitalino-sensors/8-electromyography-emg-sensor.html

The channel(s) you have one of these sensors connected to have to be configured properly before starting the acquisition. To do so, follow the device configuration instructions as described in section 2.2.4 Device Configuration. During the configuration process make sure to select the channel your EMG sensor is connected to and to set the channel configuration to EMG (see 2.2.4.6 Channel Configuration).
4.10.2 Add-on Configuration

![Muscle Load add-on](image)

Figure 152: Muscle Load add-on.

DEVICES & CHANNELS

For selecting the devices and channels where the processing algorithms will be executed, we recommend the reading of section 4.4.

Make sure you have followed the instructions on 4.10.1 Hardware Configuration for the add-on to be able to recognize your EMG channels.
MVC – MAXIMUM VOLUNTARY CONTRACTION
At the beginning of each acquisition it is needed calibrate the add-on, ensuring that it provides reliable data. To do so, click on the MVC button (maximum voluntary contraction) and let the subject contract the muscle which is being monitored to its maximum (real-time approach). Make sure the muscle can be contracted without any restrictions for the calibration to be done properly. This contraction will provide the value of the maximum possible contraction of the muscle. This value will be the reference point for the signal acquisition and processing. Each channel’s MVC value are listed in the table below MVC – MAXIMUM VOLUNTARY CONTRACTION.

![MVC button](image)

Figure 153: Real-time MVC value.

The maximum voluntary contraction (MVC) will be calculated for each channel based on the EMG maxima of your selected EMG signals.

While using the Muscle Load plugin in the visualization mode, for estimating the MVC value you should select a time-window where the calibration protocol was executed in the overview window (for more details, please, check section 3.1.3.5). After this specification the “MVC” button should be clicked and the calibration is completed.

The MVC acquisition can also be done in a separate signal acquisition session/file. This can be useful to use when doing several signal acquisitions to ensure that the analysis of all files and signals are done with the same reference values – the MVC values.

For this, start an acquisition and acquire your data which are being used as MVC values for later analysis and save your acquisition. To use the MVC data from this acquisition in another acquisition, click on the document icon in the CALCULATE FROM A FILE INSTEAD field and select the OpenSignals (r)evolution file which contains the MVC signal data. OpenSignals (r)evolution will then calculate the MVC value from the selected file.

Select OpenSignals (r)evolution file to calculate MVC values from file
APDF – AMPLITUDE PROBABILITY DENSITY FUNCTION
After acquiring the MVC, click on the APDF button to start the amplitude probability density function. This function calculates the cumulative percentage histogram of the enveloped data in terms (%) of the MVC and displays the muscle load that the muscle(s) are subjected during the current task (represented by the blue lines in the graph), identifying if this task is causing muscle tiredness (see WARNING ZONE area in Figure 152) or muscle fatigue (see DANGER ZONE area in Figure 152). Low to no muscle load will shift the blue line to the top left corner of the graph, increasing muscle load and muscle load over duration will shift the graph into the warning and danger zones.

EFFORT DENSITY (%MVC IN %TIME)
This function displays the cumulated effort in terms (%) of the MVC at 10, 50 and at 90% of the time (blue lines on chart) and displays all values of all devices and sensors in a table.

Figure 154: APDF function and Effort Density results.
4.11 Electromyography (EMG) Analysis

Electromyography Analysis

DESCRIPTION
Muscle activity is usually assessed using temporal and spectral features. With this plugin, you will be able to extract useful statistical information from Electromyography (EMG) sensor data. Its automatic onset detection algorithm enables the analysis of each individual muscle activation event, in addition to the overall analysis of the recording session. Timings analysis can also be done for each activation relative to a reference muscle activation.

Originally, EMG analysis was achieved exclusively on an offline add-on for post processing purposes.

However, since the recent release of OpenSignals (r)evolution (August of 2019), it is also available in the signal acquisition mode (see 3.1 Signal Acquisition Mode).

This add-on is included in the biosignalsplux Professional and ergoplux Researcher. It can also be bought in addition to all biosignalsplux and BITalino devices.

4.11.1 Hardware Configuration
The EMG analysis add-on processes sensor data acquired with one of the following sensors:

biosignalsplux EMG Sensor:
https://store.plux.info/sensors/283-electromyography-emg-820201201.html

biosignalsplux MuscleBAN:
https://store.plux.info/biosignalsplux-wearables/372-muscleban.html

BITalino EMG Sensor:
https://store.plux.info/bitalino-sensors/8-electromyography-emg-sensor.html

The channel(s) to which you have one of these sensors connected to have to be configured properly before starting the acquisition. To do so, follow the device configuration instructions as described in 2.2.4 Device Configuration. During the configuration process make sure to select the channel your EMG sensor is connected to and to set the channel configuration to EMG (see 2.2.4.6 Channel Configuration).
4.11.2 Add-on Configuration

![EMG Add-on Configuration](image)

Figure 155: EMG add-on (acquisition mode @left and visualization mode @right).
ACQUISITION MODE

DEVICES & CHANNELS
For selecting the devices and channels where the processing algorithms will be executed, we recommend the reading of section 4.4.

This specification can be defined at the bottom tab of the plugin interface, before clicking on the "START" button.

THRESHOLDS
After clicking on the “START” button the algorithm responsible for detecting muscular activations starts to run.

There are two available modes of function, i.e., it can execute their internal code without any interference/input from the user (AUTOMATIC threshold option) or it can act accordingly to the user specification/fixed threshold (MANUAL threshold option), where all sample values above the defined threshold will be considered as a potential start of a muscular activation period.

![Image of EMG muscular activation detection plugin](image)

Figure 156: Section containing the inputs that will define the mode of functioning of the muscular detection algorithm.
MUSCLE ACTIVATION RESULTS

The results produced by the EMG plugin consists in the duration and maximum amplitude of each detected muscular activation, presented into a textual format, through a dynamic table and also in a graphical way with the muscular activation being highlighted by the application through a translucent rectangle in the signal acquisition section of OpenSignals (r)evolution interface.

Figure 157: EMG plugin | numerical and graphical results
VISUALISATION MODE

DEVICES & CHANNELS

The EMG analysis add-on offers the possibility to process all available EMG channels (hidden and visible channels), all visible channels of the acquisition, or to select a specific device and channel to be processed by this add-on. Note that processing all visible channels will also process non-EMG sensor data, however, this can be useful to process RAW EMG channels.

Additionally, it can be selected when the channels units should be set to microvolt or millivolt in the \textit{UNIT} dropdown menu (Figure 158).

![Figure 158: EMG plugin | unit specification](image)

PROCESSING INTERVAL

In order to specify the processing time-window/interval, we recommend the reading of section 4.4
ASSIGN DIGITAL TRIGGER
In the **ASSIGN DIGITAL TRIGGER** option it is possible to select if the add-on should find all available muscle activations or if it should find activations depending on digital input and output signals, i.e. trigger signals.

The **FIND ACTIVATIONS FROM DIGITAL ON TO DIGITAL OFF** option will find all activations within the time frames where digital inputs have been received, for example, during the time frame a pushbutton has been pressed (see also 3.5.1 *Trigger*).

The **FIND ACTIVATIONS FROM DIGITAL ON TO ... SEC** will find all activations within the specified duration after the first digital inputs received, for example, beginning at the moment a pushbutton has been pressed (see also 3.5.1 *Trigger*).

![Figure 159: EMG plugin | digital trigger options](image-url)
ADVANCED OPTIONS - Filters

The advanced options allow you to change the parameters which are being used in the activation detection algorithm to adjust the processing stage of your acquisition. In this option, you can select if you want to use a lowpass, highpass or a bandpass filter to be applied on your signal and set the respective cutoff frequencies for the selected filter.

To use a lowpass filter, click on the LOWPASS button and enter the preferred cutoff frequency for this filter in the CUTOFF – LOW field and enter the order of the filter in the ORDER field.

To use a highpass filter, click on the HIGHPASS button and enter the preferred cutoff frequency for this filter in the CUTOFF – HIGH field and enter the order of the filter in the ORDER field.

To use a bandpass filter, click on the BANDPASS button and enter the preferred cutoff frequency for the lowpass component of this filter in the CUTOFF – LOW field and enter the preferred cutoff frequency for the highpass component of this filter in the CUTOFF – HIGH. Enter the order of the filter in the ORDER field.

ADVANCED OPTIONS – Signal Smooth Window

In order to ensure an effective detection of muscular activations, the EMG signals needs to be smoothed, using a moving average window, taking into consideration that the signal envelope is morphologically simpler, and the inexistence of abrupt transitions is ideal to apply a single-threshold detection algorithm.

The size of the moving window can be configured on the “ADVANCED OPTIONS” panel.
ADVANCED OPTIONS – Process X Channel
This option allows you to apply the statistical algorithms of this add-on to a selected channel X within the same time intervals of another channel without any activation dependency of channel X. The add-on will search for activations on a selected EMG channel (click on the channel to select) and analyze the selected channel X at the same time intervals where activations have been found in the selected EMG channel even if there are no activations or activation triggering activities within these time intervals in channel X (e.g. muscle is relaxed during this interval).

With this option it is possible to compare two EMG signals within the same time intervals without any activation dependencies.

![Image of EMG plugin](image1.png)

Figure 161: EMG plugin \ definition of an additional signal to process
MCV – MAXIMUM VOLUNTARY CONTRACTION
The maximum voluntary contraction (MVC) will be calculated for each channel based on the EMG maxima of your selected EMG signals.

The MVC acquisition can also be done in a separate signal acquisition session/file. This can be useful to use when doing several signal acquisitions to ensure that the analysis of all files and signals are done with the same reference values – the MVC values.

For this, start an acquisition and acquire your data which are being used as MVC values for later analysis and save your acquisition. To use the MVC data from this acquisition in another acquisition, click on the document icon in the CALCULATE FROM A FILE INSTEAD field and select the OpenSignals (r)evolution file which contains the MVC signal data. OpenSignals (r)evolution will then calculate the MVC value from the selected file.

Select OpenSignals (r)evolution file to calculate MVC values from file

Each channel’s MVC value are listed in the table below MAXIMUM VOLUNTARY CONTRACTION.

MUSCLE ACTIVATION RESULTS
Click on the PROCESS button to process all signals according to the set configuration and all found activations will be visualized in the processed channels (white frames).

Figure 162: EMG plugin | muscular activation results
To display all statistical information about one or two specific activations, click on the first activation (left mouse button). The white frame turns into a blue frame and all statistical information about this activation will be listed in the \textit{ACT X} column of the analysis results. When done, select the second activation of your choice by holding the \textit{CTLR} key of your keyboard and click on the activation (left mouse button). The white frame turns into a green frame and all statistical information about this activation will be listed in the \textit{ACT Y} column of the analysis results.

The results table displays general information about the source of this signal (device & channel) as well as general information about the duration and times of your acquisition. All activation specific data is displayed below the given general information (e.g., activation number, duration).
4.12 Electrodermal Activity (EDA) Events

Computes overall statistics and basic spectral analysis from EDA sensor data

DESCRIPTION
Electrodermal responses are characterized as phasic changes in the skin conductance, associated with the sympathetic nervous system activation. This plugin has been designed to compute overall statistics, basic spectral analysis and extract typical event-related phasic features from Electrodermal Activity (EDA) sensor data.

This is an offline add-on for post processing purposes. It is only available in the signal visualization mode (see 3.2 Signal Visualization Mode).

This add-on is included in the biosignalsplux Professional. It can also be bought in addition to all biosignalsplux and BITalino devices.

4.12.1 Hardware Configuration
The EDA analysis add-on processes sensor data acquired with one of the following sensors:

biosignalsplux EDA Sensor:
https://store.plux.info/sensors/280-electrodermal-activity-eda.html

BITalino EDA Sensor:
https://store.plux.info/bitalino-sensors/11-electrodermal-activity-eda-sensor.html

The channel(s) you have one of these sensors connected to have to be configured properly before starting the acquisition. To do so, follow the device configuration instructions as described in 2.2.4 Device Configuration. During the configuration process make sure to select the channel your EDA sensor is connected to and to set the channel configuration to EDA (see 2.2.4.6 Channel Configuration).
4.12.2 Add-on Configuration

DEVICES & CHANNELS
In order to specify the processing time-window/interval, we recommend the reading of section 4.4

Make sure you have followed the instructions on 4.12.1 Hardware Configuration for the add-on to be able to recognize your EDA channels.

STIMULUS TIME
Input the time at which the test person has experienced any external stimulus during your experiment. The input time in this field will mark the stimulus in the acquired signal.

RESPONSE TIME
The response time interval will set the time span of the EDA signal data to be processed after the external stimulus. This add-on will therefore process all the data that falls within the response time interval after the set stimulus time.
EDA PROCESSING RESULTS
The processing results returned by the EDA add-on are divided in “Phasic Parameters”, “Signal Parameters”, "Histogram" and “PSD”.

For the “Phasic Parameters” section, are presented metrics such as Electrodermal Response (time between the stimulus and the start of the electrodermal reaction) and Electrodermal Amplitude (intensity of the electrodermal response).

Regarding the “Signal Parameters” are included statistical parameters, namely the maximum, minimum and mean values of the registered skin conductance.

In terms of “Histogram” and “PSD”, these two sections present graphical objects intended to describe the statistical distribution of the sampled values and the power spectral density function, respectively.

![EDA processing results](image)

Figure 165: EDA add-on | processing results: a) Phasic Parameter; b) Signal Parameters; c) Histogram; d) PSD.
4.13 Heart Rate Variability (HRV) Analysis

💖 HRV analysis add-on

![HRV analysis add-on highlighting the detected R peaks](image)

DESCRIPTION

Heart Rate Variability (HRV) provides important quantitative markers related with the sympathetic or vagal activity. This plugin enables the seamless extraction and analysis of temporal, spectral, and non-linear parameters from Electrocardiography (ECG) or Blood Volume Pulse (BVP) sensor data. All the algorithms were implemented according to the "Standards of Measurement, Physiological Interpretation, and Clinical Use" devised by the joint European Society of Cardiology and North American Society of Pacing Electrophysiology task force.

This is an offline add-on for post processing purposes. It is only available in the signal visualization mode (see 3.2 Signal Visualization Mode).

This add-on is included in the biosignalsplux Professional Kit and the CardioBAN. It can also be bought in addition to all biosignalsplux and BITalino devices.
4.13.1 Hardware Configuration
The HRV analysis add-on processes sensor data acquired with one of the following sensors:

biosignalsplux ECG Sensor:
https://store.plux.info/sensors/277-electrocardiogram-ecg.html

biosignalsplux BVP Sensor:

BITalino ECG Sensor:
https://store.plux.info/bitalino-sensors/10-electrocardiography-ecg-sensor.html

We recommend configuring, before starting the acquisition, properly the channel(s) where you have one of these sensors connected to. To do so, follow the device configuration instruction as described in 2.2.4 Device Configuration. During the configuration process make sure to select the channel your ECG sensor is connected to and to set the channel configuration to **ECG** or, if using the BVP sensor, set the channel to configuration to **BVP** respectively (see 2.2.4.6 Channel Configuration).

4.13.2 Add-on Configuration

![HRV analysis add-on](https://store.plux.info/sensors/277-electrocardiogram-ecg.html)

Figure 167: HRV analysis add-on.
FILTER RR [RR LENGTH]

This RR filter improves the R-peak detection by analyzing the R-peaks within a set time interval, detecting the minimum RR interval value and the maximum RR interval value. This filter can be useful when analyzing ECG signals which have been acquired under heavy movement, where muscle activity can cause variations in R-peak heights, generating displaced R peak detections, which conditionate the RR interval values.

In order to apply this type of filtering stage, enter the time of both the start and ending point of the preferred interval into the RR. MIN (S) and RR. MAX (S) fields. Note, that short intervals may not provide enough data to conduct a deep analysis. In this case, OpenSignals (r)evolution will issue a warning (“Not enough NN Peaks for deeper analysis.”; not enough beat-to-beat intervals found).

With this filtering methodology we are excluding RR intervals with duration outside [RR. MIN (S); RR. MAX (S)], i.e., outliers that may not be related with the conditions under study.

FILTER RR [RR AVERAGE]

This RR filter improves the R-peak detection and signal processing by analyzing the noise within a set number of RR-intervals before and after each detected R-peak.

Two inputs must be given to this filter: Number of RR before and after and % Window Average Acceptance (WAA).

The basic logic behind this filtering stage consists in the usage of an average sliding window, that is, each sample of the tachogram (time-series that shows how RR interval duration changes along time) is scanned and the mean value of the tachogram samples contained in the user-defined window is determined. If the sample of present iteration has a duration exceeding the defined interval [RR_{interval} − WAA; RR_{interval} + WAA] it is excluded from tachogram.

![Figure 168: Filtering options: a) FILTER RR [RR LENGTH] b) FILTER RR [RR AVERAGE]](image-url)
HRV PROCESSING RESULTS

The processing results generated by the HRV add-on includes both graphical and numerical elements, namely:

- Tachogram (structural element on the entire HRV analysis);
- Histogram (with the distribution of the RR interval durations);
- Power Spectral Density function (ensuring a frequency analysis of tachogram data);
- Poincaré Plot (for extraction of non-linear parameters);
- Sequence of time parameters, such as the minimum, maximum and average duration of RR intervals.

Figure 169: HRV Add-on results | a) tachogram, b) histogram, c) Power Spectral Density, d) Poincaré Plot and e) Numerical Parameters
4.14 Respiration Analysis (PZT & RIP)

Respiration analysis add-on

DESCRIPTION
Respiratory data provide useful information about the breathing dynamics. Designed to work with Piezoelectric Respiration (PZT) and Inductive Respiration (RIP) sensor data, this plugin is a convenient way to determine respiratory rate and other useful temporal and statistical parameters associated with the respiratory cycles.

This is an offline add-on for post processing purposes. It is only available in the signal visualization mode (see 3.2 Signal Visualization Mode).

This add-on is included in the biosignalsplux Professional kit and the RespiBAN Professional wearable. It can also be bought in addition to all biosignalsplux and BITalino devices.

4.14.1 Hardware Configuration
The Respiration analysis add-on processes sensor data acquired with one of the following sensors:

biosignalsplux RIP Sensor:
https://store.plux.info/sensors/317-respiration-rip.html

biosignalsplux PZT Sensor:
https://store.plux.info/sensors/316-respiration-pzt.html

RespiBAN Researcher:
https://store.plux.info/biosignalsplux-wearables/314-respiban-researcher.html

RespiBAN Professional:
https://store.plux.info/biosignalsplux-wearables/313-respiban-professional.html

BITalino PZT Sensor:
https://store.plux.info/bitalino-sensors/40-respiration-pzt-sensor.html
We recommend to properly configure, before starting the acquisition, the channel(s) you have one of these sensors connected to. To do so, follow the device configuration instruction as described in 2.2.4 Device Configuration. During the configuration process make sure to select the channel your PZT or RIP sensor is connected to and to set the channel configuration to RESP (see 2.2.4.6 Channel Configuration).

4.15 Add-on Configuration

DEVICES & CHANNELS
In order to specify the devices and channels to be processed, we recommend the reading of section 4.4

PROCESSING INTERVAL
Following the previous recommendation (for DEVICES & CHANNELS), a simple illustrative example of how to access the processing interval options is available at section 4.4

RESPIRATION ANALYSIS PROCESSING RESULTS
Respiration analysis included in this add-on encompasses a diversified set of parameters, both in quantity and diversity.

The extracted parameters are divided into six sections:
 a) Amplitude Parameters;
 b) Signal Parameters;
 c) Histogram;
 d) Frequency Parameters;
 e) Power Spectral Density (PSD);
 f) Time Parameters.

Amplitude Parameters refers to a set of statistical parameters (maximum, mean, standard deviation and root-mean-square) extracted directly from the processing window under analysis, but taking only into consideration the respiratory peaks (i.e. the maximum value of each respiratory cycle).
Signal Parameters are similar to the ones included on Amplitude Parameters section, but in this case all samples inside the processing window are taken into consideration (and not only the respiratory peaks like in the previous section).

Regarding *Histogram* and *Power Spectral Density*, these are two graphical outputs which describes, respectively, the distribution of the respiratory signal sample values and the relative weight of each frequency component during the signal reconstruction by sinusoidal wave superposition.

Time Parameters include a set of parameters intended to demonstrate the maximum, minimum and average duration of respiratory cycles, while *Frequency Parameters* make use of *Time Parameters* to estimate the number of breaths per minute.

![Figure 171: Respiration Add-on results](image)
4.16 Load Cell Force Analysis

Load Cell Force Analysis add-on

DESCRIPTION
The Load Cell Force Analysis add-on extracts traction (kg) and compression (kg) maxima from forces applied on biosignalsplux Load Cells in real-time. It supports multiple Load Cells where baseline values can be individually set for each Load Cell (e.g. to remove offsets).

This add-on is an online add-on. It is available in the signal acquisition mode (see 3.1 Signal Acquisition Mode).

This add-on is included in the biosignalsplux Professional Kit.

4.16.1 Hardware Configuration

NOTE
This add-on requires an active internet access to download Load Cell parameters using Load Cell IDs which you can find on your Load Cell. These parameters are used to compute Load Cell values and have to be downloaded by OpenSignals (r)evolution when configuring a Load Cell for the very first time on a computer. Afterwards, these parameters will be stored on your computer and no further internet access is needed when using this add-on.

The Load Cell add-on processes sensor data acquired with biosignalsplux Load Cell:

biosignalsplux Load Cell:

https://store.plux.info/professional-sensors/297-load-cell-820202503.html

The channels to which a Load Cell is connected have to be properly configured for this add-on. To do so, follow the device configuration instruction as described in 2.2.4 Device Configuration. During the configuration process make sure to select the channel your Load Cell is connected to and to set the channel configuration to LOADCELL (see 2.2.4.6 Channel Configuration). When done, the device panel should look similar to the device panel in Figure 172, with a LOADCELL being used on channel 1 and the Load Cell parameters being set to X.
Click on the blue `xxx` below the `FORCE X-X-XXX` label and enter the Load Cell ID of your Load Cell which you can find on your Load Cell. The ID is a 5 digit number in X-X-XXX format. Please contact our support team (support@plux.info) if you cannot find any ID or if no ID has been provided to you with the Load Cell. When done, the device panel should look similar to the device panel seen in Figure 173 (ID being used here: 1-5-360).

NOTE

It is important to use the correct Load Cell ID of the Load Cell being used. *OpenSignals (r)evolution* downloads Load Cell specific parameters which are taken during the manufacturing process and vary with every Load Cell, i.e. every Load Cell has its own specific set of parameters.
4.16.2 Add-on Configuration

Start the signal acquisition using a configured Load Cell and open the Load Cell add-on (see 4.2 Listing & Using Add-ons).

![Load Cell Force Analysis add-on](image)

Figure 174: Load Cell Force Analysis add-on.

TARE OPTIONS

The *Tare Options* allow you to set baseline values for the Load Cells being used, i.e. the current force being applied will be set as a calibrated 0kg when clicked on the *TARE* button.

This can be useful when using additional accessories on the Load Cell, which would create an offset in the signal by default and where this offset should not be measured to avoid distortions of the measured signals. In this case, place the accessory on the Load Cell and use the *TARE* option to set the current weight to the 0kg reference.

The baseline values being used will then be listed in the *TARE VALUES* section of the add-on, where each Load Cells’ tared value will be listed.
REAL TIME VALUES
The Real Time Values section will show the maximum traction (kg) and compression (kg) of the Load Cell in the MAX STRENGTH. To acquire these values, click on the START values and apply forces as required on the Load Cell. The add-on will save the maximum values and update the MAX STRENGTH whenever new maxima have been detected. If a reset of the detected values is required, click on the STOP button and restart the acquisition of the maxima.

EXEPTING REPORTS
Report exportation of the acquired data can be done by following the instructions in section 4.3 Add-on Reports. Note, that the current version does only support report exportation in CSV format.
4.17 Video Synchronization

Video synchronization add-on

DESCRIPTION
Multimodal data acquisition in human studies usually involves recording data from sources other than the biosignal acquisition hardware devices (e.g. video camera). Given that the biosignal hardware and the camera are independent recording sources, a common problem when replaying the recording session is the synchronization of both. This plugin was created to provide an easy way to replay biosignal data synchronously with video using for example our LED accessory to provide a common event to both devices.

This is an offline add-on for post processing purposes. It is only available in the signal visualization mode (see 3.2 Signal Visualization Mode).

This add-on is included in the biosignalsplux Researcher, biosignalsplux Professional, ergoplux Explorer and ergoplux Researcher. It can also be bought in addition to all biosignalsplux and BITalino devices.

4.17.1 Hardware Configuration
The add-on does not specifically require any actuators or accessories, however, the use of one of the following is recommended to facilitate the synchronization of your signal and video recordings using light sources and light sensors.

LIGHT SENSORS
When using light sensors to record external light signals coming from other devices, it is recommended to configure the channel your sensor is connected to a suitable channel type (see 2.2.4.6 Channel Configuration and 5 Advanced Device Configuration of your device).

biosignalsplux light sensor:

BITalino light sensor:
https://store.plux.info/bitalino-sensors/16-light-lux-sensor.html
LEDs
When using LEDs to emit light signals to synchronize the device of your setup, connect the LED to your device and follow to instruction in section 3.1.2.4 Digital Inputs & Outputs on how to control your LED during the acquisition.

biosignalsplux LED:

https://store.plux.info/actuators/295-led.html

BITalino LED:

https://store.plux.info/bitalino-actuators/19-light-emitting-diode-led.html

4.17.2 Add-on Configuration

![Figure 176: Video Synchronization add-on.](video-sync.png)

DEVICES & CHANNELS
The video synchronization add-on does not have to be configured to a specific channel or device. The video mark that synchronizes the video will match all available signals. It affects all acquisition channels equally.

VIDEO PATH
Click on the folder next to the video field and select the acquisition video.
SYNC TIMES
Sync times displays the information of the video mark which synchronizes the video at the indicated time with a selected point in the acquired signals (see detailed information below).

Video: Locked synchronization point in the video timeline

Devices: Locked synchronization point in the acquired signals

🔒 **Locked synchronization point**
The lock marks the synchronization point between the video and the acquired signals. Stop the video at the time point where the synchronization input (e.g. visual input via LED) was set in the video. Move the lock to the time point in your acquisition where the acquired signal overlap with your recorded video and click on the lock fix this point as the synchronization point between your video and your acquisitions.

🔍 **Current position**
The aim icon uses the locked synchronization point as a reference point and displays the current position of your acquired signals compared to the acquisition video. It will only be displayed in the signal window if the displayed signals lie within the synchronized video interval.

![Figure 177: Synchronization button and respective sync time instants.](image-url)
4.18 Force Platform

Force Platform add-on

DESCRIPTION

Force Platform add-on is both an online and post-processing add-on. It is available in the signal acquisition mode (see 3.1 Signal Acquisition Mode) and in signal visualization mode (see 3.2 Signal Visualization Mode).

The Force Platform is composed by 4 load cells responsible for the detection of compression forces acting in the Force Platform surface, due to the weight of the volunteer standing or jumping in the area embraced by the platform.

The four load-cells are positioned in a standardized and precise way, equidistant from the center of the platform, ensuring that a punctual/conceptual body located at the center of the platform will originate identical measurements in all load-cell channels, i.e, the weight is equally distributed in the measurement surface.

With the *Force Platform* add-on it is possible to determine the exact mass on the platform, the respective exerted force and the position of the center of pressure (real-time functionalities), while in the post-processing version parameters such as maximum force or flight time/height can be determined.

This add-on is included in the [biosignalsplux Professional Kit](https://plux.info/sensors/288-force-platform-820202504.html) and in the [biosignalsplux Force kit](https://plux.info/sensors/288-force-platform-820202504.html).

4.18.1 Hardware Configuration

The *Force Platform* add-on processes sensor data acquired with *biosignalsplux* Force Platform:

biosignalsplux Force Platform:

As previously mentioned, the *Force Platform* is composed by 4 load-cells, so, in order to use this resource in an appropriate way it is necessary to activated 4 channels containing the “PLATFORM” label. To do so, follow the device configuration instructions as described in 2.2.4 Device Configuration. When done, the device panel should look similar to the device panel in Figure 178, with the four active channels with the label “PLATFORM” and the Vfs parameter equal to 0.
Click on the blue 0 below the Vfs label, here it is possible to define the output voltage in mV/V @ 200kgf, which is specific from each platform/load-cell, being essential to ensure the presentation of calibrated values. After finishing this procedure, the device panel should look similar to the device panel seen in Figure 179.
4.18.2 Add-on Configuration

ACQUISITION MODE

TARE OPTIONS

The *Tare Options* allow you to set baseline values for the Load Cells that compose the Force Platform, i.e., the current force being applied will be set as a calibrated 0kg when clicked on the *TARE* button.

The baseline values being used will then be listed in the *TARE VALUES* section of the add-on.

Figure 180: Load Cell Force Analysis add-on.
REAL TIME VALUES
The Real Time Values section will show the total force (N) being exerted into the platform, together with the respective mass estimate (kg). These two values are instantaneous parameters. Additionally, the center of pressure position is represented on the graphical object included in the add-on interface.

Figure 181: Force Platform Add-on with TARE Option and Real-Time Values.
VISUALISATION MODE

PROCESSING RESULTS

The Visualization version of the *Force Platform* add-on does not include configurable options, so, after pressing the “PROCESS” button the algorithm starts running autonomously and parameters such as maximum force (Fmax), force per second (FPS), flight time and jump height are presented.

![Figure 182: Force Platform Add-on with post-processing results.](image)
5 Advanced Device Configuration

OpenSignals (r)evolution is compatible with all PLUX devices. It is recommended to review the following device specific configuration to obtain the best acquisition results.

This section provides you more information for the correct configuration of your PLUX device in OpenSignals (r)evolution to allow optimal signal acquisition quality. General and basic information on how to setup your device in OpenSignals (r)evolution (e.g. de/activating channels) is described in 2.2.4 Device Configuration.
5.1 BITalino

![BITalino Board](image)

Figure 183: BITalino Board

NOTE
The following BITalino configuration is described for the BITalino Board kit. Keep in mind that, the channel configurations might be different if you’re using a BITalino Freestyle or Plugged kit and that you may need to adjust them to your current setup.

CHANNEL CONFIGURATION
The following channel configuration is the standard configuration for BITalino Boards (see Table 1). Keep in mind, that this configuration might not apply to BITalino Freestyle or Plugged devices. The configuration of these devices has to be adjusted to your current device setup.

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>SENSOR</th>
<th>CHANNEL TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Electromyography</td>
<td>EMG</td>
</tr>
<tr>
<td>A2</td>
<td>Electrocardiography</td>
<td>ECG</td>
</tr>
<tr>
<td>A3</td>
<td>Electrodermal activity</td>
<td>EDA</td>
</tr>
<tr>
<td>A4</td>
<td>Accelerometer</td>
<td>ACC</td>
</tr>
<tr>
<td>A5</td>
<td>Light sensor</td>
<td>LUX</td>
</tr>
<tr>
<td>A6</td>
<td>Battery level</td>
<td>-</td>
</tr>
<tr>
<td>I1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O1</td>
<td>LED</td>
<td>-</td>
</tr>
<tr>
<td>O2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1: Standard BITalino Board configuration.

All the available channel types for BITalino are listed in Table 2.
Table 2: BiTalino channel types.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SENSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAW</td>
<td>Compatible with every sensor</td>
</tr>
<tr>
<td>ACC</td>
<td>Accelerometer</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiography</td>
</tr>
<tr>
<td>EDA</td>
<td>Electrodermal Activity</td>
</tr>
<tr>
<td>EMG</td>
<td>Electromyography</td>
</tr>
<tr>
<td>LUX</td>
<td>Light</td>
</tr>
<tr>
<td>CUSTOM</td>
<td>Customizable channel configuration</td>
</tr>
</tbody>
</table>

LED STATES
When using BiTalino, the onboard LED provides visual information about the current device status (see Table 3).

Table 3: BiTalino LED behavior.

<table>
<thead>
<tr>
<th>LED</th>
<th>BEHAVIOR</th>
<th>DEVICE STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>White LED</td>
<td>Fading</td>
<td>Idle</td>
</tr>
<tr>
<td>White LED</td>
<td>Blinking</td>
<td>Acquiring signals</td>
</tr>
<tr>
<td>Red LED (MCU)</td>
<td>On</td>
<td>Low battery/Channel A6 is not connected (BiTalino Freestyle and BiTalino Plugged)</td>
</tr>
<tr>
<td>Red LED (PWR Block)</td>
<td>On</td>
<td>Charging battery (BiTalino needs to be turned off)</td>
</tr>
</tbody>
</table>

Keep in mind that the red LED on the MCU board might be permanently turned on when using a BiTalino Freestyle or Plugged devices as the channel A6 is not connected by default on these devices.

RESOLUTION
The resolution is pre-set for BiTalino devices. When 5 or 6 channels are actively acquiring signals, channels 1, 2, 3, and 4 are acquiring with 10-bit resolution while channels 5 and 6 are acquiring with 6-bit resolution.

When 4 or less channels are actively acquiring signals, all active channels are acquiring with 10-bit resolution including channels 5 and 6.

Digital inputs and outputs are acquiring with 1-bit resolution.
SAMPLING RATE

BITalino supports sampling rates of 1, 10, 100 and 1000Hz. However, in OpenSignals (r)evolution only 10, 100 and 1000Hz can be selected.

NOTE

Higher resolutions & sampling rates lead to higher quality signal acquisitions but are linked to higher consumption of system resources & higher probability of Bluetooth transmissions issues which may lead to signal delays in the real-time acquisition mode.

We recommend the usage of a PLUX proven Bluetooth dongle to prevent Bluetooth connection related acquisition issues.

DATASHEETS

BITalino Board:

BITalino Freestyle:

BITalino Plugged:

HeartBIT:

5.2 BITalino (r)evolution BT (Bluetooth)

NOTE
The following BITalino (r)evolution configuration is described for the BITalino (r)evolution Board BT kit. Keep in mind that, the channel configurations might be different if you’re using a BITalino (r)evolution Freestyle BT or Plugged BT kit and that you may need to adjust them to your current setup.

CHANNEL CONFIGURATION
The following channel configuration is the standard configuration for BITalino (r)evolution Boards (see Table 4). Please keep in mind, that this configuration might not apply to BITalino (r)evolution Freestyle or Plugged devices. The configuration of these devices has to be adjusted to your current device setup.

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>SENSOR</th>
<th>CHANNEL TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Electromyography</td>
<td>EMG</td>
</tr>
<tr>
<td>A2</td>
<td>Electrocardiography</td>
<td>ECG</td>
</tr>
<tr>
<td>A3</td>
<td>Electrodermal activity</td>
<td>EDA</td>
</tr>
<tr>
<td>A4</td>
<td>Electroencephalography</td>
<td>EEG</td>
</tr>
<tr>
<td>A5</td>
<td>Accelerometer</td>
<td>ACC</td>
</tr>
<tr>
<td>A6</td>
<td>Light sensor</td>
<td>LUX</td>
</tr>
<tr>
<td>I1</td>
<td>Button</td>
<td>-</td>
</tr>
<tr>
<td>I2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O1</td>
<td>LED</td>
<td>-</td>
</tr>
<tr>
<td>O2</td>
<td>Buzzer</td>
<td>-</td>
</tr>
</tbody>
</table>
All the available channel types for *BITalino (r)evolution* are listed in Table 5.

Table 5: BITalino (r)evolution channel types.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SENSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAW</td>
<td>Compatible with every sensor</td>
</tr>
<tr>
<td>ACC</td>
<td>Accelerometer</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiography</td>
</tr>
<tr>
<td>EDA</td>
<td>Electrodermal Activity</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalography</td>
</tr>
<tr>
<td>EMG</td>
<td>Electromyography</td>
</tr>
<tr>
<td>LUX</td>
<td>Light</td>
</tr>
<tr>
<td>TEMP</td>
<td>Temperature</td>
</tr>
<tr>
<td>CUSTOM</td>
<td>Customizable channel configuration</td>
</tr>
</tbody>
</table>

LED STATES

When using *BITalino (r)evolution*, the onboard led provides visual information about the current device status (see Table 6).

Table 6: BITalino (r)evolution LED behavior.

<table>
<thead>
<tr>
<th>LED</th>
<th>BEHAVIOR</th>
<th>DEVICE STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>White LED</td>
<td>Fading</td>
<td>Idle</td>
</tr>
<tr>
<td>White LED</td>
<td>Blinking</td>
<td>Acquiring signals</td>
</tr>
<tr>
<td>Red LED (MCU)</td>
<td>On</td>
<td>Low battery</td>
</tr>
<tr>
<td>Red LED (PWR Block)</td>
<td>On</td>
<td>Charging battery (BITalino (r)evolution needs to be turned off)</td>
</tr>
</tbody>
</table>

RESOLUTION

Like described for *BITalino*, the resolution is pre-set for *BITalino (r)evolution* devices. When 5 or 6 channels are actively acquiring signals, channels 1,2,3, and 4 are acquiring with 10-bit resolution while channels 5 and 6 are acquiring with 6-bit resolution.

When 4 or less channels are actively acquiring signals, all active channels are acquiring with 10-bit resolution including channels 5 and 6.

Digital inputs and outputs are acquiring with 1-bit resolution.
SAMPLING RATE
BITalino supports sampling rates of 1, 10, 100 and 1000Hz. However, in OpenSignals (r)evolution only 10, 100 and 1000Hz can be selected.

NOTE
Higher resolutions & sampling rates lead to higher quality signal acquisitions but are linked to higher consumption of system resources & higher probability of Bluetooth transmissions issues which may lead to signal delays in the real-time acquisition mode.

We recommend the usage of a PLUX proven Bluetooth dongle to prevent Bluetooth connection related acquisition issues.

DATASHEETS
BITalino (r)evolution Board:

BITalino (r)evolution Freestyle:

BITalino (r)evolution Plugged:
5.3 BITalino (r)evolution BLE (Bluetooth Low Energy)

![BITalino (r)evolution Board BLE](image)

Figure 185: BITalino (r)evolution Board BLE

NOTE
The following BITalino (r)evolution configuration is described for the BITalino (r)evolution Board BLE kit. Keep in mind that, the channel configurations might be different if you’re using a BITalino (r)evolution Freestyle BLE or Plugged BLE kit and that you may need to adjust them to your current setup.

NOTE
The BITalino (r)evolution BLE (Bluetooth Low Energy) devices are currently not supported on Mac OS and Linux systems.

CHANNEL CONFIGURATION
The previously defined channel configuration for BITalino (r)evolution BT (Table 4) is replicated by BITalino (r)evolution BLE. Please keep in mind, that this configuration might not apply to BITalino (r)evolution Freestyle or Plugged devices. The configuration of these devices has to be adjusted to your current device setup.

All the available channel types for BITalino (r)evolution are listed in Table 5

LED STATES
When using BITalino (r)evolution, the onboard led provides visual information about the current device status (see Table 6).

RESOLUTION
The resolution is pre-set for Bitalino (r)evolution devices. When 5 or 6 channels are actively acquiring signals, channels 1, 2, 3, and 4 are acquiring with 10-bit resolution while channels 5 and 6 are acquiring with 6-bit resolution.

When 4 or less channels are actively acquiring signals, all active channels are acquiring with 10-bit resolution including channels 5 and 6. Digital inputs and outputs are acquiring with 1-bit resolution.

SAMPLING RATE

Bitalino supports sampling rates of 1, 10, 100 and 1000Hz. However, in OpenSignals (r)evolution only 10, 100 and 1000Hz can be selected.

NOTE

Higher resolutions & sampling rates lead to higher quality signal acquisitions but are linked to higher consumption of system resources & higher probability of Bluetooth transmissions issues which may lead to signal delays in the real-time acquisition mode.

We recommend the usage of a PLUX proven Bluetooth Low Energy dongle to prevent Bluetooth connection related acquisition issues.

Due to limitations associated with the current Bluetooth Low Energy capabilities, please keep in mind the following aspects when using a Bitalino (r)evolution BLE device for data acquisition:

- Only a single channel can be acquired at the maximum sampling rate (1000Hz)
- To acquire data from all channels simultaneously a sampling rate of 100Hz or lower needs to be selected
- Bitalino (r)evolution BLE devices currently are only supported on Windows
- A Bluegiga BLED112 BLE dongle is required (BLE dongle)
DATASHEETS

BITalino (r)evolution Board:

BITalino (r)evolution Freestyle:

BITalino (r)evolution Plugged:

5.4 biosignalsplux

CHANNEL CONFIGURATION
biosignalsplux devices have no specific channel configuration by default. The channel configuration should be done according to your setup. All available channel types for all compatible sensors are listed in section 5.13.1 biosignalsplux.

RESOLUTION
biosignalsplux devices support 8-bit, 12-bit (in some models) and 16-bit resolutions.

SAMPLING RATE
If using OpenSignals (r)evolution versions from December 2017 (and newer) and biosignalsplux devices with firmware version 3.5, it is even possible to select higher sampling rates of up to 4000Hz.

However, note that high sampling rate for all channels are only supported for sampling rates of up to 3000Hz, while 4000Hz is limited to a maximum of 3 channels only.

NOTE
Higher resolutions & sampling rates lead to higher quality signal acquisitions but are linked to higher consumption of system resources & higher probability of Bluetooth transmissions issues which may lead to signal delays in the real-time acquisition mode.

We recommend the usage of a PLUX proven Bluetooth dongle to prevent Bluetooth connection related acquisition issues.
INTERNAL MEMORY

biosignalsplux hubs with internal memory can be used for offline acquisitions which do not require an active Bluetooth connection during data acquisition. For detailed instructions on how to use the internal memory of your device, please check section 3.3 Data Logging.

DOCUMENTATION

Datasheets and user manuals for your biosignalsplux device can be found on the following website:

5.5 biosignalsplux Force

![Figure 187: biosignalsplux Force](image)

NOTE
The biosignalsplux Force is a force platform with real-time streaming and data logging capabilities which uses a 4-channel biosignalsplux device. It is recommended to also check the following sections to take full advantage of all the force platform features:

- Data logging (see 3.3 Data Logging)
- Force platform add-on (see 4.18 Force Platform)
- biosignalsplux configuration (see 5.4 biosignalsplux)

CHANNEL CONFIGURATION
The available channel types for the biosignalsplux device being used with the force platform should be set to the PLATFORM sensor type.

RESOLUTION
biosignalsplux devices support 8-bit, 12-bit (in some models) and 16-bit resolutions.

SAMPLING RATE
If using OpenSignals (r)evolution versions from December 2017 (and newer) and biosignalsplux devices with firmware version 3.5, it is even possible to select higher sampling rates of up to 4000Hz.

However, note that high sampling rate for all channels are only supported for sampling rates of up to 3000Hz, while 4000Hz is limited to a maximum of 3 channels only.
NOTE
Higher resolutions & sampling rates lead to higher quality signal acquisitions but are linked to higher consumption of system resources & higher probability of Bluetooth transmissions issues which may lead to signal delays in the real-time acquisition mode.

We recommend the usage of a PLUX proven [Bluetooth dongle](https://www.biosignalsplux.com/en/learn/documentation/) to prevent Bluetooth connection related acquisition issues.

INTERNAL MEMORY
biosignalsplux hubs with internal memory can be used for offline acquisitions which do not require an active Bluetooth connection during data acquisition. For detailed instructions on how to use the internal memory of your device, please check section 3.3 Data Logging.

DOCUMENTATION
Datasheets and user manuals for your *biosignalsplux* device can be found on the following website:

5.6 biosignalsplux Solo [new designation for OpenBAN]

NOTE
biosignalsplux Solo is a single channel acquisition device which can be used with any biosignalsplux sensor except the SpO2 and fNIRS sensors.

Also, this device is not compatible with any of the accessory devices which require a digital port, taking into consideration that this device does not have a digital port.

NOTE
The usage of some sensors is limited or not possible due to the limited number of inputs of this device, as some sensors require several channels to work properly (e.g., external accelerometer, goniometer).

CHANNEL CONFIGURATION
biosignalsplux Solo devices have a specific channel configuration with the exception of channel 2, which is the channel where biosignalsplux sensors are connected to. Therefore, only the configuration of channel 2 has to be adjusted to the connected sensor.

Additionally, the biosignalsplux Solo comes with an integrated and pre-connected microphone, triaxial accelerometer, and triaxial magnetometer.
The channel configuration must be done according the internal setup of the biosignalsplux Solo and your additional sensor; see Table 7.

Table 7: Channel configuration of the biosignalsplux Solo.

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>SENSOR</th>
<th>CHANNEL TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Microphone</td>
<td>MICRO</td>
</tr>
<tr>
<td>2</td>
<td>biosignalsplux sensor</td>
<td>[DEPENDS ON CONNECTED SENSOR]</td>
</tr>
<tr>
<td>3</td>
<td>Accelerometer – X-Axis</td>
<td>ACC_X</td>
</tr>
<tr>
<td>4</td>
<td>Accelerometer – Y-Axis</td>
<td>ACC_Y</td>
</tr>
<tr>
<td>5</td>
<td>Accelerometer – Z-Axis</td>
<td>ACC_Z</td>
</tr>
<tr>
<td>6</td>
<td>Magnetometer – X-Axis</td>
<td>MAG_X</td>
</tr>
<tr>
<td>7</td>
<td>Magnetometer – Y-Axis</td>
<td>MAG_Y</td>
</tr>
<tr>
<td>8</td>
<td>Magnetometer – Z-Axis</td>
<td>MAG_Z</td>
</tr>
</tbody>
</table>

The available channel types are listed in section 5.13.1 biosignalsplux.

NOTE
This sensor has a virtual reference; there is no need to connect an additional reference electrode.

RESOLUTION
biosignalsplux Solo supports 8-bit, 12-bit (in some models) and 16-bit resolutions.

SAMPLING RATE
The sampling rate can be set to 10Hz, 20Hz, 50Hz, 100Hz, 200Hz, 300Hz, ..., 1000Hz.

NOTE
Higher resolutions & sampling rates lead to higher quality signal acquisitions but are linked to higher consumption of system resources & higher probability of Bluetooth transmissions issues which may lead to signal delays in the real-time acquisition mode.

We recommend the usage of a PLUX proven Bluetooth dongle to prevent Bluetooth connection related acquisition issues.

DOCUMENTATION
Datasheets and user manuals for your device can be found on the following website:

5.7 MuscleBAN

Figure 189: MuscleBAN.

NOTE
MuscleBAN devices are closed devices with prewired, internal analog ports. Other biosignalsplux sensors cannot be connected to this device.

CHANNEL CONFIGURATION
MuscleBAN devices have a specific channel configuration by default. The configuration inside OpenSignals (r)evolution should be done as displayed in Table 8.

Table 8: MuscleBAN channel configuration.

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>SENSOR</th>
<th>CHANNEL TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electromyography</td>
<td>EMG</td>
</tr>
<tr>
<td>2</td>
<td>Accelerometer (x-axis)</td>
<td>XYZ</td>
</tr>
<tr>
<td>3</td>
<td>Accelerometer (y-axis)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Accelerometer (z-axis)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Magnetometer (x-axis)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Magnetometer (y-axis)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Magnetometer (z-axis)</td>
<td></td>
</tr>
</tbody>
</table>

RESOLUTION
MuscleBAN devices support 8-bit and 16-bit resolutions.
SAMPLING RATE
The sampling rate can be set to 50Hz, 80Hz, 160 Hz, 200Hz, 400Hz, ..., 1000Hz. However, note that these devices stream all samples in envelopes to your computer with a streaming rate of up to 50Hz.

NOTE
Higher resolutions & sampling rates lead to higher quality signal acquisitions but are linked to higher consumption of system resources & higher probability of Bluetooth transmissions issues which may lead to signal delays in the real-time acquisition mode.

We recommend the usage of a PLUX proven Bluetooth Low Energy dongle to prevent Bluetooth connection related acquisition issues.

DOCUMENTATION
Datasheets and user manuals for your device can be found on the following website:

5.8 MotionBAN

![Figure 190: MotionBAN](image)

NOTE

MotionBAN devices are closed devices with prewired, internal analog ports. Other *biosignalsplux* sensors cannot be connected to this device.

CHANNEL CONFIGURATION

MotionBAN devices have a specific channel configuration by default. The configuration inside *OpenSignals (r)evolution* should be done as displayed in Table 9.

Table 9: MotionBAN channel configuration.

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>SENSOR</th>
<th>CHANNEL TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Accelerometer (x-axis)</td>
<td>XYZ</td>
</tr>
<tr>
<td>2</td>
<td>Accelerometer (y-axis)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Accelerometer (z-axis)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Magnetometer (x-axis)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Magnetometer (y-axis)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Magnetometer (z-axis)</td>
<td></td>
</tr>
</tbody>
</table>

RESOLUTION

MotionBAN supports 8-bit and 16-bit resolutions.

SAMPLING RATE

The sampling rate can be set to 100Hz, 200Hz, 300Hz, ..., 800Hz.
NOTE
Higher resolutions & sampling rates lead to higher quality signal acquisitions but are linked to higher consumption of system resources & higher probability of Bluetooth transmissions issues which may lead to signal delays in the real-time acquisition mode.

We recommend the usage of a PLUX proven Bluetooth dongle to prevent Bluetooth connection related acquisition issues.

INTERNAL MEMORY
MotionBAN devices have an internal memory which can be used for offline acquisitions without the need of an active Bluetooth connection during data acquisition. For detailed instructions on how to use the internal memory of your device, please check section 3.3 Data Logging.

DOCUMENTATION
Datasheets and user manuals for your devices can be found on the following website:

5.9 CardioBAN

NOTE
CardioBAN devices are closed devices with prewired, internal analog ports. Other biosignalsplux sensors cannot be connected to this device.

CHANNEL CONFIGURATION
CardioBAN devices have a specific channel configuration by default. The configuration inside OpenSignals (r)evolution should be done as displayed in Table 10.

Table 10: CardioBAN channel configuration.

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>SENSOR</th>
<th>CHANNEL TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electrocardiography</td>
<td>ECG</td>
</tr>
<tr>
<td>2</td>
<td>Accelerometer (x-axis)</td>
<td>XYZ</td>
</tr>
<tr>
<td>3</td>
<td>Accelerometer (y-axis)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Accelerometer (z-axis)</td>
<td></td>
</tr>
</tbody>
</table>

RESOLUTION
CardioBAN supports 8-bit and 16-bit resolutions.
SAMPLING RATE

If using OpenSignals (r)evolution versions from December 2017 (and newer) and biosignalsplux devices with firmware version 3.5, it is even possible to select higher sampling rates of up to 4000Hz.

However, note that high sampling rate for all channels are only supported for sampling rates of up to 3000Hz, while 4000Hz is limited to a maximum of 3 channels only.

NOTE

Higher resolutions & sampling rates lead to higher quality signal acquisitions but are linked to higher consumption of system resources & higher probability of Bluetooth transmissions issues which may lead to signal delays in the real-time acquisition mode.

We recommend the usage of a PLUX proven Bluetooth dongle to prevent Bluetooth connection related acquisition issues.

DOCUMENTATION

Datasheets and user manuals for your device can be found on the following website:

5.10 RespiBAN Explorer

![RespiBAN Explorer](image)

Figure 192: RespiBAN Explorer

NOTE

RespiBAN Explorer devices are closed devices with prewired, internal analog ports. Other *biosignalsplus* sensors cannot be connected to this device.

CHANNEL CONFIGURATION

RespiBAN Explorer devices have a specific channel configuration by default. The configuration inside *OpenSignals (r)evolution*.

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>SENSOR</th>
<th>CHANNEL TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Respiration</td>
<td>RESP</td>
</tr>
<tr>
<td>2</td>
<td>Accelerometer (x-axis)</td>
<td>XYZ</td>
</tr>
<tr>
<td>3</td>
<td>Accelerometer (y-axis)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Accelerometer (z-axis)</td>
<td></td>
</tr>
</tbody>
</table>

RESOLUTION

RespiBAN Explorer supports 8-bit and 16-bit resolutions.

SAMPLING RATE

The sampling rate can be set to 100Hz, 200Hz, 300Hz, ..., 1000Hz.
NOTE
Higher resolutions & sampling rates lead to higher quality signal acquisitions but are linked to higher consumption of system resources & higher probability of Bluetooth transmissions issues which may lead to signal delays in the real-time acquisition mode.

We recommend the usage of a PLUX proven Bluetooth dongle to prevent Bluetooth connection related acquisition issues.

DOCUMENTATION
Datasheets and user manuals for your device can be found on the following website:

5.11 RespiBAN Researcher

![RespiBAN Researcher](image)

NOTE

RespiBAN Researcher devices are closed devices with prewired, internal analog ports. Other *biosignalsplux* sensors cannot be connected to this device.

CHANNEL CONFIGURATION

RespiBAN Researcher devices have a specific channel configuration by default. The configuration inside *OpenSignals (r)evolution* should be done as displayed in Table 12.

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>SENSOR</th>
<th>CHANNEL TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Respiration</td>
<td>RESP</td>
</tr>
<tr>
<td>2</td>
<td>Accelerometer (x-axis)</td>
<td>XYZ</td>
</tr>
<tr>
<td>3</td>
<td>Accelerometer (y-axis)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Accelerometer (z-axis)</td>
<td></td>
</tr>
</tbody>
</table>

RESOLUTION

RespiBAN Researcher supports 8-bit and 16-bit resolutions.
SAMPLING RATE
If using OpenSignals (r)evolution versions from December 2017 (and newer) and biosignalsplux devices with firmware version 3.5, it is even possible to select higher sampling rates of up to 4000Hz.

However, note that high sampling rate for all channels are only supported for sampling rates of up to 3000Hz, while 4000Hz is limited to a maximum of 3 channels only.

NOTE
Higher resolutions & sampling rates lead to higher quality signal acquisitions but are linked to higher consumption of system resources & higher probability of Bluetooth transmissions issues which may lead to signal delays in the real-time acquisition mode.

We recommend the usage of a PLUX proven Bluetooth dongle to prevent Bluetooth connection related acquisition issues.

DOCUMENTATION
Datasheets and user manuals for your device can be found on the following website:

5.12 RespiBAN Professional

RespiBAN Professional devices have 4 prewired channels which are connected to the onboard sensors and 4 generic channels which can be used to connect biosignalsplux sensors to this device.

The configuration for the first 4 channels have to be done according to the configuration of the prewired sensors while the last 4 have to be done according to your sensor specific setup using the available channel types for biosignalsplux sensors listed in in section 5.13.1 biosignalsplux.

<table>
<thead>
<tr>
<th>CHANNEL</th>
<th>SENSOR</th>
<th>CHANNEL TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Respiration (inductive)</td>
<td>RESP</td>
</tr>
<tr>
<td>2</td>
<td>Accelerometer (x-axis)</td>
<td>XYZ</td>
</tr>
<tr>
<td>3</td>
<td>Accelerometer (y-axis)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Accelerometer (z-axis)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Generic</td>
<td>Sensor specific selection needed.</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13: RespiBAN Professional channel configuration.
RESOLUTION
RespiBAN Professional supports 8-bit and 16-bit resolutions.

SAMPLING RATE
If using *OpenSignals (r)evolution* versions from December 2017 (and newer) and *biosignalsplux* devices with firmware version 3.5, it is even possible to select higher sampling rates of up to 4000Hz.

However, note that high sampling rate for all channels are only supported for sampling rates of up to 3000Hz, while 4000Hz is limited to a maximum of 3 channels only.

NOTE
Higher resolutions & sampling rates lead to higher quality signal acquisitions but are linked to higher consumption of system resources & higher probability of Bluetooth transmissions issues which may lead to signal delays in the real-time acquisition mode.

We recommend the usage of a PLUX proven [Bluetooth dongle](https://www.biosignalsplux.com/en/learn/documentation/) to prevent Bluetooth connection related acquisition issues.

DOCUMENTATION
Datasheets and user manuals for your device can be found on the following website:

5.13 Compatible Sensors & Channel Types

OpenSignals (r)evolution is compatible with all biosignalsplux & BITalino sensors. See below the links to access more information about these sensors and all sensor datasheets.

5.13.1 biosignalsplux

The following biosignalsplux sensors are compatible with OpenSignals (r)evolution. The available channel types (detailed configuration instructions presented in section 2.2.4.6 Channel Configuration) for each sensor can be found in the table below (Table 14), followed by links to each sensor’s datasheet and website can be found below this table.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SENSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVP</td>
<td>Blood volume pulse (BVP)</td>
</tr>
<tr>
<td>CUSTOM</td>
<td>Customizable channel configuration</td>
</tr>
<tr>
<td>DIA</td>
<td>Blood pressure reader (BPR) - diastolic sensor values</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiography (ECG)</td>
</tr>
<tr>
<td>EDA</td>
<td>Electrodermal Activity (EDA)</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalography (EEG)</td>
</tr>
<tr>
<td>EMG</td>
<td>Electromyography (EMG)</td>
</tr>
<tr>
<td>PLATFORM</td>
<td>Force platform (load cells)</td>
</tr>
<tr>
<td>FSR-X</td>
<td>Force (FSR) sensor (X = type of sensor (1, 2, 3 or 4))</td>
</tr>
<tr>
<td>GLUC</td>
<td>Glucose Meter Reader</td>
</tr>
<tr>
<td>GONIO</td>
<td>Goniometer</td>
</tr>
<tr>
<td>HANDGR</td>
<td>Hand load cell</td>
</tr>
<tr>
<td>HR</td>
<td>SpO2 reader (OSL) – heart rate sensor values</td>
</tr>
<tr>
<td>LOADCELL</td>
<td>Load cell</td>
</tr>
<tr>
<td>MICRO</td>
<td>Built-in microphone of the biosignalsplux Solo device</td>
</tr>
<tr>
<td>OXI</td>
<td>SpO2 sensor (with or without clip)</td>
</tr>
<tr>
<td>PULSEOXI</td>
<td>SpO2 reader (OSL) – oxygen saturation sensor values</td>
</tr>
<tr>
<td>RAW</td>
<td>Raw digital signal; compatible with every sensor</td>
</tr>
<tr>
<td>RESP</td>
<td>Respiration sensor (RIP & PZT)</td>
</tr>
<tr>
<td>SYS</td>
<td>Blood pressure reader (BPR) – diastolic sensor values</td>
</tr>
<tr>
<td>SpO2.ARM</td>
<td>SpO2 sensor (with or without clip) for measurements on the arm</td>
</tr>
<tr>
<td>TEMP</td>
<td>Temperature sensor (TMP)</td>
</tr>
<tr>
<td>EDA.ARM</td>
<td>Electrodermal Activity (EDA) for measurements on the arm</td>
</tr>
<tr>
<td>SpO2.FING</td>
<td>SpO2 sensor (with or without clip) for measurements on the finger</td>
</tr>
<tr>
<td>fNIRS</td>
<td>Functional Near-Infrared Spectroscopy (fNIRS)</td>
</tr>
<tr>
<td>XYZ</td>
<td>Accelerometer (ACC)</td>
</tr>
</tbody>
</table>

A: not compatible with biosignalsplux Solo; B: only one axis when being used with biosignalsplux Solo
The *CUSTOM* channel type has no pre-set channel configuration allowing you to manually select the gain, offset and unit of the channel. This channel configuration can be helpful when using 3rd party or custom sensors.

Accelerometer (ACC):

Blood Pressure Reader (BPR):

Blood Volume Pulse (BVP):

Electrocardiogram (ECG):

Electrodermal Activity (EDA):

Electroencephalography (EEG):

Electromyography (EMG):

Functional Near-Infrared Spectroscopy (fNIRS):

Foot Switch (FSW):

Force (FSR):
Force Platform:

Glucose Meter Reader (GMR):

Goniometer (GON):

Light (LUX):

Load Cell:
Website: https://www.biosignalsplux.com/en/load-cell/

Pushbutton (BTN):
Website: https://www.biosignalsplux.com/en/pushbutton/

Respiration (RIP):

Respiration (PZT – Piezoelectric):

SpO2:

SpO2 Reader (OSL):

RFID:
Temperature (TMP):
Website: https://www.biosignalsplux.com/en/tmp-temperature/

Vaginal EMG:
Website: https://www.biosignalsplux.com/en/vaginal-probe/
5.13.2 BITalino

The following BITalino sensors are compatible with OpenSignals (r)evolution. The available channel types (detailed configuration instructions presented in section 2.2.4.6 Channel Configuration) for each sensor can be found in, followed by links to each sensor’s datasheet and website can be found below this table.

Table 15: Channel types of compatible BITalino sensors.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SENSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>Accelerometer (ACC)</td>
</tr>
<tr>
<td>CO2</td>
<td>CO2 sensor</td>
</tr>
<tr>
<td>CUSTOM</td>
<td>Customizable channel configuration</td>
</tr>
<tr>
<td>DIA</td>
<td>Blood pressure reader (BPR) – diastolic sensor values</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiography (ECG)</td>
</tr>
<tr>
<td>EDA</td>
<td>Electrodermal Activity (EDA)</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalography (EEG)</td>
</tr>
<tr>
<td>EMG</td>
<td>Electromyography (EMG)</td>
</tr>
<tr>
<td>GLUC</td>
<td>Glucometer Data</td>
</tr>
<tr>
<td>HR</td>
<td>SpO2 reader (OSL) – heart rate sensor values</td>
</tr>
<tr>
<td>LUX</td>
<td>Light sensor (LUX)</td>
</tr>
<tr>
<td>OXI</td>
<td>SpO2 sensor (with or without clip)</td>
</tr>
<tr>
<td>PULSEOXI</td>
<td>SpO2 reader (OSL) – oxygen saturation sensor values</td>
</tr>
<tr>
<td>RAW</td>
<td>Raw digital signal; compatible with every sensor</td>
</tr>
<tr>
<td>RESP</td>
<td>Respiration sensor (RIP & PZT)</td>
</tr>
<tr>
<td>SYS</td>
<td>Blood pressure reader (BPR) – systolic sensor values</td>
</tr>
<tr>
<td>TEMP</td>
<td>Temperature sensor (TMP)</td>
</tr>
<tr>
<td>TEMPw</td>
<td>High resolution temperature sensor</td>
</tr>
<tr>
<td>TVOC</td>
<td>Total Volatile Organic Compounds</td>
</tr>
</tbody>
</table>

Accelerometer (ACC):

Website: https://plux.info/barebone-sensors/14-accelerometer-acc-sensor.html

Blood Pressure Reader (BPR):

Website: https://plux.info/barebone-sensors/388-blood-pressure-bpr-sensor.html

Electrocardiography (ECG):
Website: https://plux.info/barebone-sensors/10-electrocardiography-ecg-sensor.html

Electrodermal Activity (EDA):
Website: https://plux.info/barebone-sensors/11-electrodermal-activity-eda-sensor.html

Electroencephalography (EEG):
Website: https://plux.info/barebone-sensors/12-electroencephalography-eeg-sensor.html

Electrogastrography (EGG):
Website: https://plux.info/barebone-sensors/405-electrogastrography-egg-sensor.html

Electromyography (EMG):
Website: https://plux.info/barebone-sensors/8-electromyography-emg-sensor.html

Electrooculography (EOG):
Website: https://plux.info/barebone-sensors/404-electrooculography-eog-sensor.html

Flexi Force:
Website: https://plux.info/barebone-sensors/381-flexiforce-fsr-sensor.html
Datasheet: -

Glucose Meter Reader (GMR):
Website: https://plux.info/barebone-sensors/387-glucometer-qmr-sensor.html
High Definition Temperature (NTC):
Website: https://plux.info/barebone-sensors/379-temperature-ntc-sensor.html

Light (LUX):
Website: https://plux.info/barebone-sensors/16-light-lux-sensor.html

Pushbutton (BTN):
Website: https://plux.info/barebone-sensors/15-pushbutton-btn.html

Pulse Sensor:
Website: https://plux.info/barebone-sensors/42-pulsesensor.html
Datasheet: -

Respiration (PZT – Piezoelectric):
Website: https://plux.info/barebone-sensors/40-respiration-pzt-sensor.html

SpO2 Reader (OSL):
Website: https://plux.info/barebone-sensors/389-spo2-reader-po2-sensor.html

Temperature (TMP):
Website: https://plux.info/barebone-sensors/39-temperature-tmp-sensor.html
5.14 3rd-party Sensors

OpenSignals (r)evolution and PLUX devices allow the usage and acquisition of data from 3rd party sensors, using the respective accessories (see below). These accessories allow you to connect analog or digital third-party sensors to your PLUX devices which comply with the specified and compatible electric values of the PLUX device.

Please read the following sections and review the sensor’s and/or device’s datasheet before connecting any device to your PLUX device or sensor.

5.14.1 I/O Breakout Cable

WARRANTY WARNING
Usage of this breakout cable input interface **VOIDS THE ELECTRICAL WARRANTY** of your device and sensors.

DISCLAIMER
BEWARE when using this accessory to preserve electrical isolation of the user.

We expressly disclaim any liability whatsoever for any direct, indirect, consequential, incidental or special damages, including, without limitation, lost revenues, lost profits, losses resulting from business interruption or loss of data, regardless of the form of action or legal theory under which the liability may be asserted, even if advised of the possibility of such damages.

This accessory allows the connection, within the specified electric values, of a wide range of analog or digital third-party sensors to the biosignalsplux hub. This allows, for instance, the acquisition and visualization in real time on OpenSignals (r)evolution of a third-party sensor, using the biosignalsplux hub.

SPECIFICATIONS

Maximum Output Current: 200mA (with no other sensors connected to the hub)

Input Voltage Range: 0 – 3V

Output Voltage Range: 0 – 3V or ±1.5V (if reference is GND)

DOCUMENTATION

Datasheets and user manuals for your device can be found on the following website:

http://biosignalsplux.com/datasheets/IO_Breakout_Cable.pdf
Check the table below and the breakout cable datasheet (see annexes) for detailed information about the pinout configuration for the analog ports (standard sensor channels) and digital ports (8-channel biosignalsplux devices only) BEFORE CONNECTING YOUR SENSOR TO YOUR DEVICE to avoid damaging your PLUX device.

Table 16: Pinout configuration for analog & digital ports.

<table>
<thead>
<tr>
<th>ANALOG PORT</th>
<th>DIGITAL PORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-</td>
<td>V-</td>
</tr>
<tr>
<td>Accelerometer (ACC)</td>
<td>0V</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
</tr>
<tr>
<td>CO2 sensor</td>
<td>Digital output</td>
</tr>
<tr>
<td>V+</td>
<td>V+</td>
</tr>
<tr>
<td>Customizable channel configuration</td>
<td>3V</td>
</tr>
<tr>
<td>IN</td>
<td>IN</td>
</tr>
<tr>
<td>Analog</td>
<td>Digital input</td>
</tr>
</tbody>
</table>

5.14.2 Sensor Breakout PCB

WARRANTY WARNING
Usage of this breakout cable input interface **VOIDS THE ELECTRICAL WARRANTY** of your device and sensors.

DISCLAIMER
BEWARE when using this accessory as to preserve electrical isolation of the user.

We expressly disclaim any liability whatsoever for any direct, indirect, consequential, incidental or special damages, including, without limitation, lost revenues, lost profits, losses resulting from business interruption or loss of data, regardless of the form of action or legal theory under which the liability may be asserted, even if advised of the possibility of such damages.

This accessory allows easy access, within the specified electric values, to the pins on biosignalsplux sensors and actuators for interfacing them with third-party systems.

Check the sensor datasheets **before** using this accessory to avoid any damage of your system or your sensor(s).
Please read the datasheet of your sensors to confirm the electrical values and compatibility of your sensor.

Table 17: Pinout configuration for analog & digital ports.

<table>
<thead>
<tr>
<th>ANALOG PORT</th>
<th>DIGITAL PORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-</td>
<td>GND</td>
</tr>
<tr>
<td>GND</td>
<td>1.5V (to sensor)</td>
</tr>
<tr>
<td>V+</td>
<td>3V (to sensor)</td>
</tr>
<tr>
<td>IN</td>
<td>Sensor output</td>
</tr>
<tr>
<td>V-</td>
<td>GND</td>
</tr>
<tr>
<td>GND</td>
<td>Sensor output</td>
</tr>
<tr>
<td>V+</td>
<td>3V (to sensor)</td>
</tr>
<tr>
<td>IN</td>
<td>1.5V (to sensor)</td>
</tr>
</tbody>
</table>
6 Software & APIs

6.1 OpenSignals (r)evolution

OpenSignals (r)evolution is our easy-to-use, versatile, and scalable software for real-time biosignals visualization, capable of direct interaction with all PLUX devices.

Core functionality includes sensor data acquisition from multiple channels and devices, data visualization and recording, as well as loading of pre-recorded signals. *OpenSignals (r)evolution* is also a Python-powered web-based software framework, targeted at rapid application development; a bare bone code base is available on [GitHub](https://github.com).

You can download the newest version of *OpenSignals (r)evolution* here:

biosignalsplux:

BITalino:

6.2 OpenSignals Mobile

OpenSignals Mobile is a slimmed down version of *OpenSignals (r)evolution* specifically designed to run on Android® mobile phones or tablets (iOS coming soon), while preserving the ease-of-use and performance for real-time sensor data visualization and recording.

OpenSignals Mobile is currently in development. However, if you are interested in being one of the first few users to get your hands on a beta version of this app, visit our *OpenSignals* website and fill in the form to subscribe for the early access beta version.

6.3 APIs

It is possible to connect the devices to third party applications including your own custom software. The needed toolkits to start your own biosignals software are delivered by PLUX for free. All the functionalities and features of our high-end research devices can be accessed by developers to integrate PLUX systems in custom and third-party applications.

biosignalsplux APIs:

BITalino APIs:

7 Troubleshooting

7.1 Windows Bluetooth Stack Troubleshooting

Most internal Bluetooth adapters are compatible with PLUX devices. However, if you’re experiencing a great number of connection loss events, reconnection problems, missing samples or similar problems, your internal Bluetooth module might not have enough performance to deal with the data throughput of the device you are using. In this case, reducing the sampling frequency or the sample resolution might solve this issue, if a change of these parameters is possible.

For this reason, PLUX has identified Bluetooth dongles that have been tested and are known to work with our devices. We recommend that you use one of these PLUX-tested Bluetooth dongles, which are either already shipped with your device (e.g. in the case of biosignalsplux kits) or can be purchased separately from our store. These dongles are compatible to work with data rates up to 24 Mbps.

The solution is to exchange the internal Bluetooth Adapter to an external Bluetooth USB dongle that uses the Windows native Bluetooth stack. For this, you’ll need to install the Bluetooth dongle properly, as described in the following steps, which are explained in more detail throughout the next pages for the supported operating systems:

Step 1: Removing already paired devices from your operating system
Step 2: Installing PLUX-proven Bluetooth dongle
Step 3: Changing Bluetooth Stack to Microsoft’s native Bluetooth stack

NOTE
If you’re already using PLUX devices with the old Bluetooth stack, please remove your device(s) from your computer **before** changing the Bluetooth drivers/Changing to Microsoft Bluetooth Stack.

NOTE
We recommend going through all the following steps to set up your Bluetooth dongle correctly, even if Windows may automatically install and set up your dongle.

NOTE
Installing the Bluetooth dongle and changing the Bluetooth stack is only required for Windows computers only. Computers with a Mac OS X operating system do not need to go through these steps and use the internal Bluetooth adapter instead.
7.1.1 Windows 7 & Windows 8

Step 1: Removing already paired devices from your operating system
To remove Bluetooth devices, it is needed to access the Device Manager on your computer and view the list of connected devices. The device list can be found following these steps:

Start Button > Control Panel > Hardware and Sound > View devices and printers

In the Device and Printers window, PLUX devices can be found in the Unspecified section. Right-click on the device you want to remove and select Remove device (see Figure 195)

![Image](image1.png)

Figure 195: Windows 7 "Devices and Printers" window.

If the device is not listed under Unspecified anymore, it has been successfully removed from your system.

Step 2: Installing PLUX-proven Bluetooth dongle
To install the PLUX-proven Bluetooth dongle, plug it in and install all the necessary drivers for the Bluetooth dongle to work (an Internet connection is advisable). Windows should display the window below.

![Image](image2.png)

Figure 196: Wait for Windows to install your Bluetooth dongle.
Make sure you wait until your Bluetooth Dongle is installed. Windows will issue a notification and you'll be ready to configure the correct Bluetooth stack following the next step.

Step 3: Changing Bluetooth Stack to Microsoft’s native Bluetooth stack

To configure the Bluetooth stack of the Bluetooth dongle, you have to connect your Bluetooth dongle to your computer and access the Device Manager on your computer. The device manager can be found following these steps:

```
Start Button > Control Panel > System and Maintenance > Device Manager
```

In the device manager, the Bluetooth dongle should be listed as *Generic Bluetooth Adapter* (see Figure 197). If your machine already has an internal Bluetooth Adapter and you have just plugged in the PLUX-proven Bluetooth Dongle, keep in mind that the last one will be automatically disabled by Windows. This is why one of your Bluetooth adapters under Bluetooth in the device manager shows a yellow warning icon (⚠️) stating: *Code 10 - This device cannot start.*

![Device Manager](image)

Figure 197: Bluetooth dongle listed in the device manager.

If your Bluetooth dongle is the one disabled, you can manually disable your internal Bluetooth adapter by right-clicking on it in the device manager and selecting *Disable*. This action will enable your Bluetooth dongle by default.

If, after this action, your Bluetooth Dongle continues to display a yellow warning icon (⚠️), it means that it is not installed correctly and you should try to update the drivers by right-clicking on it and selecting *Update Driver Software...*, reboot your computer (in order to the installed components be fully functional) or fix the problem displayed under *Device Status* in the device properties (right-click the Bluetooth device and select Properties; see screenshot below).
Figure 198: First step to update the driver of the Bluetooth dongle.

Select **Browse my computer for driver software** from the new window.

Figure 199: Browse for driver software.
Select *Let me pick from a list of device drivers on my computer.*

![Figure 200: Pick driver from list of device drivers on the computer.](image)

Select *Generic Bluetooth Adapter* and click on *Next* to install the Microsoft Bluetooth Stack. Of several models of *Generic Bluetooth Adapter* are available you can select any of them. It will not make any difference.

![Figure 201: Select Generic Bluetooth Adapter](image)

Your device should now be configured properly and have no warning sign or error message in the device manager. Rebuild the connection with your device (see instructions in 1.4.1 Windows 7 or 1.4.2 Windows 8) and test your device by recording signals with the *OpenSignals (r)evolution* software. If, after all these steps, you keep experiencing the same issues, contact our support team (support@plux.info)
7.1.2 Windows 10

Step 1: Removing already paired devices from your operating system
To remove Bluetooth devices, it is needed to access the Bluetooth configuration of your operating system. Click on the start button at the left lower corner in of your desktop to open the start menu. Click on the gear symbol to open the settings panel of your operating system as can be seen below.

![Access to the settings panel in Windows 10.](image)

In the settings panel, click on the Devices Bluetooth, printers, mouse field to open the device configurations of your system.

![Windows 10 settings panel.](image)
Select Bluetooth from the list which is displayed on the left side of your settings window. Note, that in some versions the Bluetooth option might not be available and that Bluetooth devices might be listed under Other devices.

Click on your biosignalsplux and click on Remove device to remove this Bluetooth connection from your computer and confirm the Are you sure you want to remove this device? message that will be shown on your screen. Repeat this step with every biosignalsplux if you’re using several devices.

If, after this step, your device is not listed in the list of Bluetooth devices anymore, the device has been successfully removed.

Step 2: Installing PLUX-proven Bluetooth dongle
To install the PLUX-proven Bluetooth dongle, plug it into your computer. Windows will install the Bluetooth dongle and display the window below.

If your device is not listed in the list of Bluetooth devices anymore, the device has been successfully removed.
Make sure you wait until your Bluetooth Dongle is installed. Windows will issue a notification and you'll be ready to configure the correct Bluetooth stack following the next step. Note that this step might require a restart of your system. Make sure to close all your open work and programs properly before restarting the system to prevent data losses or other issues.

Step 3: Changing Bluetooth Stack to Microsoft’s native Bluetooth stack

To configure the Bluetooth stack of the Bluetooth dongle, you have to connect your Bluetooth dongle to your computer and access the *Device Manager* on your computer. Enter *Device Manager* into the search field of your taskbar and click on the listed device manager.

In the device manager, the Bluetooth dongle should be listed as *Generic Bluetooth Adapter* (see Figure 206). If your machine already has an internal Bluetooth Adapter and you have just plugged in the PLUX-proven Bluetooth Dongle, keep in mind that the last one will be automatically disabled by Windows. This is why one of your Bluetooth adapters under Bluetooth in the device manager shows a yellow warning icon (⚠️) stating: *Code 10 - This device cannot start.*

![Device Manager](image)

Figure 206: Bluetooth dongle listed in the device manager.

If, after this action, your Bluetooth Dongle continues to display a yellow warning icon (⚠️), it means that it is not installed correctly and you should try to update the drivers by right-clicking on it and selecting *Update Driver Software...* or fix the problem displayed under *Device Status* in the device properties (right-click the Bluetooth device and select Properties; see screenshot below).
Figure 207: First step to update the driver of the Bluetooth dongle.

Select *Browse my computer for driver software* from the new window.

![Update Driver Software - Generic Bluetooth Adapter](image)

How do you want to search for driver software?

- **Search automatically for updated driver software**
 Windows will search your computer and the Internet for the latest driver software for your device, unless you’ve disabled this feature in your device installation settings.

- **Browse my computer for driver software**
 Locate and install driver software manually.

Figure 208: Browse for driver software.
Select *Let me pick from a list of device drivers on my computer*.

![Image of driver selection dialog]

Figure 209: Pick driver from list of device drivers on the computer.

Select *Generic Bluetooth Adapter* and click on *Next* to install the Microsoft Bluetooth Stack. Several models of *Generic Bluetooth Adapter* are available and you can select any of them. It will not make any difference.

![Image of driver selection dialog with models]

1. ![Model selection]
2. ![Next button]

Figure 210: Select Generic Bluetooth Adapter

Your device should now be configured properly and have no warning sign or error message in the device manager. Rebuild the connection with your *biosignalsplux* device (see 1.4 Connecting Bluetooth Devices) and test your device by recording signals with the *OpenSignals (r)evolution* software. If, after all these steps, you keep experiencing the same issues, contact our support team (support@plux.info)
7.2 Device Firmware & Update

biosignalsplux firmware updates are not done automatically. We recommend to frequently check if newer firmware versions are available and to upgrade or update the firmware on your device when newer versions are available to ensure full functionality and compatibility with all biosignalsplux sensors and accessories. Updating the biosignalsplux firmware lets you also take advantage of all the newest recording resolutions and offline scheduling features.

Newer versions of OpenSignals (r)evolution will also issue a notification if the firmware of your device is too old and not supported by your current version of OpenSignals.

In both cases, check the following website to see if newer firmware versions are available, and download and extract all the required tools to update or upgrade your firmware:

NOTE

biosignalsplux devices can be used on Windows, Linux and Mac OS X operating systems. However, at the time being, the firmware update software does only run on Windows operating system.

For Mac OS X and Linux users, the firmware update software can be used in virtual machines running a compatible Windows version (Windows 7 or newer).

7.2.1 Checking Firmware Version

Before updating the firmware of your biosignalsplux device, it is recommended to check the current device’s firmware version to see whether a firmware update is required or not.

To do so, make sure that your device is charged and turned on (LED must blink green). If you haven’t connected your device to your computer via Bluetooth before, connect your device following the instructions 1.4 Connecting Bluetooth Devices before following the next steps.

Open the Updater.exe you’ve just downloaded and extracted. A new window will appear. Click on the Find Devices button and wait for your MAC-address to appear in the Device Mac Address Field.
Check if the MAC-address that is listed in the dialog matches the MAC-address of the biosignalsplux device you want to update or upgrade. The MAC-address of the device is placed on its back. Click on the Check button.

The firmware update software will check the current version of the biosignalsplux and display it in the dialog field.

7.2.2 Updating or Upgrading Firmware

If your device is running on an older firmware it is recommended to update or upgrade the firmware for compatibility reasons with new features and to ensure that your device works properly with the newest version of the OpenSignals (r)evolution software.

To do so, make sure that your device is charged and turned on (LED must blink green). If you haven’t connected your device to your computer via Bluetooth before, connect your device following the instructions 1.4 Connecting Bluetooth Devices before following the next steps.

Open the Updater.exe you’ve downloaded and extracted. A new window will appear. Click on the Find Devices button and wait for your MAC-address to appear in the dialog bellows. Check if the MAC-address that is listed in the dialog matches the MAC-address of the biosignalsplux device you want to update or upgrade. The MAC-address of the device is placed on its back.

Click on Browse and browse the folder where the firmware .ENC file from the downloaded package is placed and select the .ENC file. The firmware updater should have a similar appearance to the one presented on Figure 213.

In order to complete the update procedure, it will only be necessary to click the Update button.

or if you need to upload another firmware to run with specific sensors (e.g. beta versions of new sensors)
biosignalsplux will turn itself off two times during the firmware update or upgrade. Wait for the **biosignalsplux** to turn itself on again after the first time (this may take some seconds). The **biosignalsplux** firmware will now be installed on the **biosignalsplux** and the device will automatically turn itself off for the second time after the installation is finished. This time check the indications of the update software, and, if no different indications are given, turn your device back on and confirm the dialog of the update software by clicking on the **OK** button.

When the firmware update/upgrade has finished, a dialog will pop up displaying the old and the new version of the **biosignalsplux** firmware. New firmware was successfully installed if the version of the new firmware matches your selected .ENC file and if it is superior to the version of the displayed old firmware.
7.3 Error List

The following table will help you resolve some of the most common errors that may appear while using OpenSignals (r)evolution. Do not hesitate to contact us if you have any other problems or questions. TID stands for Troubleshoot ID.

<table>
<thead>
<tr>
<th>TID</th>
<th>Error:</th>
</tr>
</thead>
</table>
| 1 | - No Bluetooth adapter found. Verify if an adapter is connected and turned on.
- No Bluetooth adapter detected. |
| | **Solution:** |
| | If you have an internal Bluetooth Adapter or have the external Bluetooth Adapter Dongle plugged in your computer, the problem might be due to:
- Driver or installation issue: Follow steps on section 7.1. Windows Bluetooth Stack Troubleshooting
<p>| 2 | The device could not be found. Verify that it is within range and turned on. |
| | Solution: |
| | Your Bluetooth Adapter is not being able to find the specified device. Either it’s turned off, out of range or there’s interference in the environment. |
| 3 | The communication port does not exist or it is already being used. |
| | Solution: |
| | This exception usually means that the device to which you are trying to connect is already connected somewhere else. To solve, you can either shutdown the software that is connecting to the device or try turning off and on the device itself, since this action will close the connection. |
| | If you keep having this issue multiple times, it may be due to a problem with the Bluetooth Adapter when it comes to closing the connection to the device. Please try the instructions in 7.1. Windows Bluetooth Stack Troubleshooting. |
| | If the issue is still not solved, you have to manually force the disconnection of your software with the device after each interaction. To do so, follow the instruction in related to the removal of Paired Devices (7.1. Windows Bluetooth Stack Troubleshooting). |</p>
<table>
<thead>
<tr>
<th>TID</th>
<th>Error:</th>
</tr>
</thead>
</table>
| 4 | - A socket operation was attempted to an unreachable network.
- A socket operation encountered a dead end |
| | **Solution:** |
| | This exception will present itself in your Windows language and when you are using a BITalino. The problem (and solution) is similar to TID 1. |
| 5 | A connection attempt failed because the connected party did not respond after a period of time, or established connection failed because connected host has failed to respond. |
| | **Solution:** |
| | This exception will be presented to you in your native Windows language and if you’re using a BITalino. The problem (and solution) is similar to TID 2. |
| 6 | Only one usage of each socket address is normally permitted. |
| | **Solution:** |
| | This exception will be presented to you in your native Windows language and if you’re using a BITalino. The problem (and solution) is similar to TID 3. |
8 Safety Information

Please read the following safety instructions **before** using your devices system with *OpenSignals (r)evolution* to prevent any damages or issues with the user, test persons and/or devices being used in your acquisition setup and environments. Note, that violations of these instructions can lead to inferior signal quality and/or damages to the system and user.

All PLUX products and PLUX related *OpenSignals (r)evolution* products are hereinafter referred to as “device” and/or “devices”.

! The user should always keep the device and its accessories dry.

! The user must turn off the device and contact Technical Support if the device (system and/or accessories) reach uncomfortable temperatures.

! The user should not use the device in noisy environments (environments with microwaves and other similar equipment). Doing so will lead to noise increase in the acquired signals and Bluetooth connectivity issues.

! The user must not use the device near the fire or in potentially explosive atmospheres, such as atmospheres with flammable gas.

! The user should only use the detection surfaces or other approved accessories purchased from PLUX or by a PLUX agent.

! The user should inspect the sensors on a regular basis to ensure that they remain in good working order.

! The user should stop using the device if experience any kind of discomfort or skin irritation.

! The user should not use the device continuously for periods of time above 60 minutes. Do not use the system on persons with allergies to silver.

! The user should dispose detection surfaces after using the device. Detection surfaces are single-user and disposable. Reusable electrodes should be reused by the same user. Do not use reusable electrodes on several users.

! The user must not place the device in the microwave.

! The user must not insert objects into the holes of the device.
The user should not open the device or its accessories. The repair of the same should be only done by properly authorized PLUX personnel.

The user should make sure the cables do not obstruct the passage of people.

The user should use the sensor cables with extreme caution to avoid risk of strangulation.

The user should keep a safe distance between the device and other devices to ensure their proper functioning.

The user should only send the device to repair to qualified PLUX personnel.

The user should not immerse the sensors or the biosignalsplux device, nor clean with liquid or abrasives.

The user should handle the device with caution and not expose the device or accessories to high accelerations and vibrations.

The devices should not be used in patients with implanted electronic devices of any kind, including pace-makers, electronic infusion pumps, stimulators, defibrillators or similar.

Do not apply electrodes over damaged or irritated skin.

Do not use your device while charging its internal battery.
9 Regulatory & Legal Information

9.1 Disclaimer
All mentioned OpenSignals (r)evolution, biosignalsplux and BITalino products in this manual are intended for use in life science education and research applications only; they are not medical devices, nor medical software solutions, nor are they intended for medical diagnosis, cure, mitigation, treatment or prevention of disease and is provided to you “as is”.

We expressly disclaim any liability whatsoever for any direct, indirect, consequential, incidental or special damages, including, without limitation, lost revenues, lost profits, losses resulting from business interruption or loss of data, regardless of the form of action or legal theory under which the liability may be asserted, even if advised of the possibility of such damages.

9.2 Certification
OpenSignals (r)evolution and any PLUX device connected to this software do not have a medical device certification and are, therefore, not a medical device.

PLUX research products are intended for use in life science education and research applications with humans and not intended for diagnostics, cure, mitigation, treatment or prevention of disease.

9.3 Contact & Support
Contact us if you're experiencing any problems that cannot be solved with the information given in the biosignalsplux or OpenSignals (r)evolution manual. We'll get back to you as soon as possible to find the best solution for your problem.

Please send us an e-mail with precise information about the error occurrence, device configuration, and, if possible, screenshots of the problem to support@plux.info.